Multiscale-integrated deep learning approaches for short-term load forecasting

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Machine Learning and Cybernetics Pub Date : 2024-08-06 DOI:10.1007/s13042-024-02302-4
Yang Yang, Yuchao Gao, Zijin Wang, Xi’an Li, Hu Zhou, Jinran Wu
{"title":"Multiscale-integrated deep learning approaches for short-term load forecasting","authors":"Yang Yang, Yuchao Gao, Zijin Wang, Xi’an Li, Hu Zhou, Jinran Wu","doi":"10.1007/s13042-024-02302-4","DOIUrl":null,"url":null,"abstract":"<p>Accurate short-term load forecasting (STLF) is crucial for the power system. Traditional methods generally used signal decomposition techniques for feature extraction. However, these methods are limited in extrapolation performance, and the parameter of decomposition modes needs to be preset. To end this, this paper develops a novel STLF algorithm based on multi-scale perspective decomposition. The proposed algorithm adopts the multi-scale deep neural network (MscaleDNN) to decompose load series into low- and high-frequency components. Considering outliers of load series, this paper introduces the adaptive rescaled lncosh (ARlncosh) loss to fit the distribution of load data and improve the robustness. Furthermore, the attention mechanism (ATTN) extracts the correlations between different moments. In two power load data sets from Portugal and Australia, the proposed model generates competitive forecasting results.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"8 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02302-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate short-term load forecasting (STLF) is crucial for the power system. Traditional methods generally used signal decomposition techniques for feature extraction. However, these methods are limited in extrapolation performance, and the parameter of decomposition modes needs to be preset. To end this, this paper develops a novel STLF algorithm based on multi-scale perspective decomposition. The proposed algorithm adopts the multi-scale deep neural network (MscaleDNN) to decompose load series into low- and high-frequency components. Considering outliers of load series, this paper introduces the adaptive rescaled lncosh (ARlncosh) loss to fit the distribution of load data and improve the robustness. Furthermore, the attention mechanism (ATTN) extracts the correlations between different moments. In two power load data sets from Portugal and Australia, the proposed model generates competitive forecasting results.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于短期负荷预测的多矢量集成深度学习方法
准确的短期负荷预测(STLF)对电力系统至关重要。传统方法一般使用信号分解技术进行特征提取。然而,这些方法的外推性能有限,而且分解模式的参数需要预设。为此,本文开发了一种基于多尺度透视分解的新型 STLF 算法。该算法采用多尺度深度神经网络(MscaleDNN)将负荷序列分解为低频和高频成分。考虑到负荷序列的异常值,本文引入了自适应重标度 lncosh(ARlncosh)损失,以拟合负荷数据的分布并提高鲁棒性。此外,注意力机制(ATTN)还能提取不同时刻之间的相关性。在葡萄牙和澳大利亚的两个电力负荷数据集中,所提出的模型产生了有竞争力的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Machine Learning and Cybernetics
International Journal of Machine Learning and Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.90
自引率
10.70%
发文量
225
期刊介绍: Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. Key research areas to be covered by the journal include: Machine Learning for modeling interactions between systems Pattern Recognition technology to support discovery of system-environment interaction Control of system-environment interactions Biochemical interaction in biological and biologically-inspired systems Learning for improvement of communication schemes between systems
期刊最新文献
LSSMSD: defending against black-box DNN model stealing based on localized stochastic sensitivity CHNSCDA: circRNA-disease association prediction based on strongly correlated heterogeneous neighbor sampling Contextual feature fusion and refinement network for camouflaged object detection Scnet: shape-aware convolution with KFNN for point clouds completion Self-refined variational transformer for image-conditioned layout generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1