An Electrochemical Biosensor for the Detection of Pulmonary Embolism and Myocardial Infarction

Biosensors Pub Date : 2024-08-09 DOI:10.3390/bios14080386
Yaw-Jen Chang, Fu-Yuan Siao, En-Yu Lin
{"title":"An Electrochemical Biosensor for the Detection of Pulmonary Embolism and Myocardial Infarction","authors":"Yaw-Jen Chang, Fu-Yuan Siao, En-Yu Lin","doi":"10.3390/bios14080386","DOIUrl":null,"url":null,"abstract":"Due to the clinical similarities between pulmonary embolism (PE) and myocardial infarction (MI), physicians often encounter challenges in promptly distinguishing between them, potentially missing the critical window for the correct emergency response. This paper presents a biosensor, termed the PEMI biosensor, which is designed for the identification and quantitative detection of pulmonary embolism or myocardial infarction. The surface of the working electrode of the PEMI biosensor was modified with graphene oxide and silk fibroin to immobilize the mixture of antibodies. Linear sweep voltammetry was employed to measure the current-to-potential mapping of analytes, with the calculated curvature serving as a judgment index. Experimental results showed that the curvature exhibited a linear correlation with the concentration of antigen FVIII, and a linear inverse correlation with the concentration of antigen cTnI. Given that FVIII and cTnI coexist in humans, the upper and lower limits were determined from the curvatures of a set of normal concentrations of FVIII and cTnI. An analyte with a curvature exceeding the upper limit can be identified as pulmonary embolism, while a curvature falling below the lower limit indicates myocardial infarction. Additionally, the further the curvature deviates from the upper or lower limits, the more severe the condition. The PEMI biosensor can serve as an effective detection platform for physicians.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3390/bios14080386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the clinical similarities between pulmonary embolism (PE) and myocardial infarction (MI), physicians often encounter challenges in promptly distinguishing between them, potentially missing the critical window for the correct emergency response. This paper presents a biosensor, termed the PEMI biosensor, which is designed for the identification and quantitative detection of pulmonary embolism or myocardial infarction. The surface of the working electrode of the PEMI biosensor was modified with graphene oxide and silk fibroin to immobilize the mixture of antibodies. Linear sweep voltammetry was employed to measure the current-to-potential mapping of analytes, with the calculated curvature serving as a judgment index. Experimental results showed that the curvature exhibited a linear correlation with the concentration of antigen FVIII, and a linear inverse correlation with the concentration of antigen cTnI. Given that FVIII and cTnI coexist in humans, the upper and lower limits were determined from the curvatures of a set of normal concentrations of FVIII and cTnI. An analyte with a curvature exceeding the upper limit can be identified as pulmonary embolism, while a curvature falling below the lower limit indicates myocardial infarction. Additionally, the further the curvature deviates from the upper or lower limits, the more severe the condition. The PEMI biosensor can serve as an effective detection platform for physicians.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于检测肺栓塞和心肌梗死的电化学生物传感器
由于肺栓塞(PE)和心肌梗塞(MI)在临床上的相似性,医生在及时区分这两种疾病时经常会遇到困难,有可能错过正确急救的关键窗口期。本文介绍了一种生物传感器,称为 PEMI 生物传感器,设计用于识别和定量检测肺栓塞或心肌梗塞。PEMI 生物传感器的工作电极表面用氧化石墨烯和蚕丝纤维素修饰,以固定抗体混合物。采用线性扫描伏安法测量分析物的电流-电位映射,以计算出的曲率作为判断指标。实验结果表明,曲率与抗原 FVIII 的浓度呈线性相关,与抗原 cTnI 的浓度呈线性反相关。鉴于 FVIII 和 cTnI 在人体内同时存在,因此根据一组正常浓度的 FVIII 和 cTnI 的曲率确定了上限和下限。如果分析物的曲率超过上限,则可确定为肺栓塞,而低于下限则表示心肌梗塞。此外,曲率偏离上限或下限越远,病情越严重。PEMI 生物传感器可作为医生的有效检测平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrochemical Impedance Spectroscopy-Based Microfluidic Biosensor Using Cell-Imprinted Polymers for Bacteria Detection Ultrasensitive Electrochemical Biosensors Based on Allosteric Transcription Factors (aTFs) for Pb2+ Detection Salmonella Detection in Food Using a HEK-hTLR5 Reporter Cell-Based Sensor Paper-Based Microfluidic Device for Extracellular Lactate Detection Recent Electrochemical Advancements for Liquid-Biopsy Nucleic Acid Detection for Point-of-Care Prostate Cancer Diagnostics and Prognostics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1