Novas: Tackling Online Dynamic Video Analytics With Service Adaptation at Mobile Edge Servers

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computers Pub Date : 2024-06-19 DOI:10.1109/TC.2024.3416675
Liang Zhang;Hongzi Zhu;Wen Fei;Yunzhe Li;Mingjin Zhang;Jiannong Cao;Minyi Guo
{"title":"Novas: Tackling Online Dynamic Video Analytics With Service Adaptation at Mobile Edge Servers","authors":"Liang Zhang;Hongzi Zhu;Wen Fei;Yunzhe Li;Mingjin Zhang;Jiannong Cao;Minyi Guo","doi":"10.1109/TC.2024.3416675","DOIUrl":null,"url":null,"abstract":"Video analytics at mobile edge servers offers significant benefits like reduced response time and enhanced privacy. However, guaranteeing various quality-of-service (QoS) requirements of dynamic video analysis requests on heterogeneous edge devices remains challenging. In this paper, we propose a scalable online video analytics scheme, called Novas, which automatically makes precise service configuration adjustments upon constant video content changes. Specifically, Novas leverages the filtered confidence sum and a two-window t-test to online detect accuracy fluctuations without ground truth information. In such cases, Novas efficiently estimates the performance of all potential service configurations through a singular value decomposition (SVD)-based collaborative filtering method. Finally, given the NP-hardness of the optimal scheduling problem, a heuristic scheduling strategy that maximizes the minimum remaining resources is devised to schedule the most suitable configurations to servers for execution. We evaluate the effectiveness of Novas through extensive hybrid experiments conducted on a dedicated testbed. Results show that Novas can achieve a substantial over 27\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n improvement in satisfying the accuracy requirements compared with existing methods adopting fixed configurations, while ensuring latency requirements. Moreover, Novas improves the goodput of the system by an average of 37.86% compared to existing state-of-the-art scheduling solutions.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 9","pages":"2220-2232"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10565291/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Video analytics at mobile edge servers offers significant benefits like reduced response time and enhanced privacy. However, guaranteeing various quality-of-service (QoS) requirements of dynamic video analysis requests on heterogeneous edge devices remains challenging. In this paper, we propose a scalable online video analytics scheme, called Novas, which automatically makes precise service configuration adjustments upon constant video content changes. Specifically, Novas leverages the filtered confidence sum and a two-window t-test to online detect accuracy fluctuations without ground truth information. In such cases, Novas efficiently estimates the performance of all potential service configurations through a singular value decomposition (SVD)-based collaborative filtering method. Finally, given the NP-hardness of the optimal scheduling problem, a heuristic scheduling strategy that maximizes the minimum remaining resources is devised to schedule the most suitable configurations to servers for execution. We evaluate the effectiveness of Novas through extensive hybrid experiments conducted on a dedicated testbed. Results show that Novas can achieve a substantial over 27 $\times$ improvement in satisfying the accuracy requirements compared with existing methods adopting fixed configurations, while ensuring latency requirements. Moreover, Novas improves the goodput of the system by an average of 37.86% compared to existing state-of-the-art scheduling solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novas:利用移动边缘服务器的服务适应性解决在线动态视频分析问题
移动边缘服务器上的视频分析具有显著优势,如缩短响应时间和增强隐私保护。然而,在异构边缘设备上保证动态视频分析请求的各种服务质量(QoS)要求仍然具有挑战性。在本文中,我们提出了一种名为 Novas 的可扩展在线视频分析方案,它能在视频内容不断变化时自动进行精确的服务配置调整。具体来说,Novas 利用滤波置信度总和和双窗口 t 检验来在线检测精度波动,而无需地面实况信息。在这种情况下,Novas 通过基于奇异值分解(SVD)的协同过滤方法,有效地估算出所有潜在服务配置的性能。最后,考虑到最优调度问题的 NP 难度,我们设计了一种启发式调度策略,最大限度地减少剩余资源,从而将最合适的配置调度到服务器上执行。我们在专用测试平台上进行了广泛的混合实验,评估了 Novas 的有效性。结果表明,与采用固定配置的现有方法相比,Novas 在满足精度要求方面可实现超过 27 美元/次的大幅改进,同时还能确保延迟要求。此外,与现有的最先进调度解决方案相比,Novas 还能将系统的吞吐量平均提高 37.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
期刊最新文献
2024 Reviewers List Shared Recurrence Floating-Point Divide/Sqrt and Integer Divide/Remainder With Early Termination A System-Level Test Methodology for Communication Peripherals in System-on-Chips Stream: Design Space Exploration of Layer-Fused DNNs on Heterogeneous Dataflow Accelerators Balancing Privacy and Accuracy Using Significant Gradient Protection in Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1