Enhancing qualification via the use of diagnostics and prognostics techniques

IF 2.2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL Quality and Reliability Engineering International Pub Date : 2024-08-05 DOI:10.1002/qre.3634
Abhishek Ram, Diganta Das
{"title":"Enhancing qualification via the use of diagnostics and prognostics techniques","authors":"Abhishek Ram, Diganta Das","doi":"10.1002/qre.3634","DOIUrl":null,"url":null,"abstract":"Qualification is a process that demonstrates whether a product meets or exceeds specified requirements. Testing and data analysis performed within a qualification procedure should verify that products satisfy those requirements, including reliability requirements. Most of the electronics industry qualifies products using procedures dictated within qualification standards. A review of common qualification standards reveals that those standards do not consider customer requirements or the product physics‐of‐failure in that intended application. As a result, qualification, as represented in the reviewed qualification standards, would not meet our definition of qualification for reliability assessment. This paper introduces the application of diagnostics and prognostics techniques to analyze real‐time data trends while conducting qualification tests. Diagnostics techniques identify anomalous behavior exhibited by the product, and prognostics techniques forecast how the product will behave during the remainder of the qualification test and how the product would have behaved if the test continued. As a result, combining diagnostics and prognostics techniques can enable the prediction of the remaining time‐to‐failure for the product undergoing qualification. Several ancillary benefits related to an improved testing strategy, parts selection and management, and support of a prognostics and health management system in operation also arise from applying prognostics and diagnostics techniques to qualification.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3634","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Qualification is a process that demonstrates whether a product meets or exceeds specified requirements. Testing and data analysis performed within a qualification procedure should verify that products satisfy those requirements, including reliability requirements. Most of the electronics industry qualifies products using procedures dictated within qualification standards. A review of common qualification standards reveals that those standards do not consider customer requirements or the product physics‐of‐failure in that intended application. As a result, qualification, as represented in the reviewed qualification standards, would not meet our definition of qualification for reliability assessment. This paper introduces the application of diagnostics and prognostics techniques to analyze real‐time data trends while conducting qualification tests. Diagnostics techniques identify anomalous behavior exhibited by the product, and prognostics techniques forecast how the product will behave during the remainder of the qualification test and how the product would have behaved if the test continued. As a result, combining diagnostics and prognostics techniques can enable the prediction of the remaining time‐to‐failure for the product undergoing qualification. Several ancillary benefits related to an improved testing strategy, parts selection and management, and support of a prognostics and health management system in operation also arise from applying prognostics and diagnostics techniques to qualification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过使用诊断和预测技术提高合格率
鉴定是一个证明产品是否达到或超过规定要求的过程。在鉴定程序中进行的测试和数据分析应验证产品是否满足这些要求,包括可靠性要求。大多数电子行业都使用鉴定标准规定的程序对产品进行鉴定。对通用鉴定标准的审查表明,这些标准并没有考虑客户的要求或产品在预期应用中的故障物理特性。因此,所审查的鉴定标准中的鉴定并不符合我们对可靠性评估鉴定的定义。本文介绍了诊断和预测技术的应用,以便在进行鉴定测试时分析实时数据趋势。诊断技术可识别产品表现出的异常行为,而预测技术则可预测产品在鉴定测试剩余时间内的表现,以及产品在测试继续进行时的表现。因此,将诊断技术和预测技术相结合,可以预测正在进行鉴定的产品的剩余失效时间。在鉴定中应用预后分析和诊断技术还能带来一些辅助效益,包括改进测试策略、零件选择和管理,以及支持运行中的预后分析和健康管理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
21.70%
发文量
181
审稿时长
6 months
期刊介绍: Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering. Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies. The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal. Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry. Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.
期刊最新文献
A probabilistic uncertain linguistic approach for FMEA‐based risk assessment A resilient S2 monitoring chart with novel outlier detectors Dynamic predictive maintenance strategy for multi‐component system based on LSTM and hierarchical clustering Monitoring defects on products' surface by incorporating scan statistics into process monitoring procedures Enhanced health states recognition for electric rudder system using optimized twin support vector machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1