Sensitivity of Primary Human Glioblastoma Cell Lines to the Mumps Virus Vaccine Strain

IF 1.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biology Pub Date : 2024-08-07 DOI:10.1134/s0026893324700262
E. Yu. Nikolaeva, Y. R. Zhelayeva, O. Yu. Susova, A. A. Mitrofanov, V. O. Varachev, T. V. Nasedkina, V. V. Zverev, O. A. Svitich, Y. I. Ammour
{"title":"Sensitivity of Primary Human Glioblastoma Cell Lines to the Mumps Virus Vaccine Strain","authors":"E. Yu. Nikolaeva, Y. R. Zhelayeva, O. Yu. Susova, A. A. Mitrofanov, V. O. Varachev, T. V. Nasedkina, V. V. Zverev, O. A. Svitich, Y. I. Ammour","doi":"10.1134/s0026893324700262","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The sensitivity of human glioblastoma cells to virus-mediated oncolysis was investigated on five patient-derived cell lines. Primary glioblastoma cells (Gbl13n, Gbl16n, Gbl17n, Gbl25n, and Gbl27n) were infected with tenfold serial dilutions of the Leningrad-3 strain of the mumps virus, and virus reproduction and cytotoxicity were monitored for 96 −120 h. Immortalized human non-tumor NKE cells were used as controls to determine the virus specificity. Four out of the five glioblastoma cell lines examined were susceptible to mumps virus infection, whereas no virus reproduction was observed in the non-tumor cell line. Moreover, the level of proapoptotic caspase-3 activity was increased in all infected cells 48 h after infection. The kinetics of viral RNA accumulation in the studied glioblastoma cell lines was comparable with the rate of cell death. The data suggest that glioblastoma cell lines were permissive for the mumps virus. Glioblastoma cell lines differed in type I IFN production in response to the mumps virus infection. In addition, it was shown that MV infection was able to induce immunogenic death of glioblastoma cells.</p>","PeriodicalId":18734,"journal":{"name":"Molecular Biology","volume":"11 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s0026893324700262","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The sensitivity of human glioblastoma cells to virus-mediated oncolysis was investigated on five patient-derived cell lines. Primary glioblastoma cells (Gbl13n, Gbl16n, Gbl17n, Gbl25n, and Gbl27n) were infected with tenfold serial dilutions of the Leningrad-3 strain of the mumps virus, and virus reproduction and cytotoxicity were monitored for 96 −120 h. Immortalized human non-tumor NKE cells were used as controls to determine the virus specificity. Four out of the five glioblastoma cell lines examined were susceptible to mumps virus infection, whereas no virus reproduction was observed in the non-tumor cell line. Moreover, the level of proapoptotic caspase-3 activity was increased in all infected cells 48 h after infection. The kinetics of viral RNA accumulation in the studied glioblastoma cell lines was comparable with the rate of cell death. The data suggest that glioblastoma cell lines were permissive for the mumps virus. Glioblastoma cell lines differed in type I IFN production in response to the mumps virus infection. In addition, it was shown that MV infection was able to induce immunogenic death of glioblastoma cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原代人类胶质母细胞瘤细胞株对腮腺炎病毒疫苗株的敏感性
摘要 在五种源自患者的细胞系上研究了人类胶质母细胞瘤细胞对病毒介导的溶瘤作用的敏感性。用十倍序列稀释的列宁格勒-3株腮腺炎病毒感染原代胶质母细胞瘤细胞(Gbl13n、Gbl16n、Gbl17n、Gbl25n和Gbl27n),监测病毒繁殖和细胞毒性96-120小时。所检测的五种胶质母细胞瘤细胞系中有四种对腮腺炎病毒感染敏感,而在非肿瘤细胞系中没有观察到病毒繁殖。此外,感染 48 小时后,所有受感染细胞的促凋亡 Caspase-3 活性水平都有所提高。在所研究的胶质母细胞瘤细胞系中,病毒 RNA 的积累动力学与细胞死亡速度相当。这些数据表明,胶质母细胞瘤细胞株对腮腺炎病毒具有容许性。胶质母细胞瘤细胞系对腮腺炎病毒感染的 I 型 IFN 产生反应不同。此外,研究还表明,腮腺炎病毒感染能够诱导胶质母细胞瘤细胞免疫性死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology
Molecular Biology 生物-生化与分子生物学
CiteScore
1.30
自引率
8.30%
发文量
78
审稿时长
3 months
期刊介绍: Molecular Biology is an international peer reviewed journal that covers a wide scope of problems in molecular, cell and computational biology including genomics, proteomics, bioinformatics, molecular virology and immunology, molecular development biology, molecular evolution and related areals. Molecular Biology publishes reviews, experimental and theoretical works. Every year, the journal publishes special issues devoted to most rapidly developing branches of physical-chemical biology and to the most outstanding scientists.
期刊最新文献
Triosephosphate Isomerase Inhibition by Resveratrol: A New Mechanism of Anti-Glycolysis in Breast Cancer Silencing of the S-Phase Kinase-Associated Protein 2 Gene (SKP2) Inhibits Proliferation and Migration of Hepatocellular Carcinoma Cells New Epigenetic Markers of Age-Dependent Changes in the Cardiovascular System Amino Acid Substitution Patterns in the E6 and E7 Proteins of HPV Type 16: Phylogeography and Evolution Human eRF1 Translation Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1