Kurt O. Reinhart, Matthew J. Rinella, Richard C. Waterman, Hilaire S. Sanni Worogo, Lance T. Vermeire
{"title":"Carbon sequestration uncertainty: is grazing-induced soil organic carbon accrual offset by inorganic carbon loss?","authors":"Kurt O. Reinhart, Matthew J. Rinella, Richard C. Waterman, Hilaire S. Sanni Worogo, Lance T. Vermeire","doi":"10.1071/rj24006","DOIUrl":null,"url":null,"abstract":"<p>In drylands, soil inorganic carbon (SIC) represents the largest terrestrial carbon sink, and observational studies indicate a negative relationship and possible trade-off between SIC (e.g. calcium carbonate [CaCO<sub>3</sub>]) and soil organic carbon (SOC). Some rangeland managers aim to increase SOC stocks to help decarbonise the atmosphere. Unfortunately, the fate of SIC (and SOC) is uncertain, and grazing-induced SOC accrual may correspond with CaCO<sub>3</sub> dissolution, which can produce CO<sub>2</sub> emissions. An added concern is whether carbon sequestration schemes focused on SOC stocks need to be discounted for putative CO<sub>2</sub> emissions due to CaCO<sub>3</sub> dissolution. We used data from a 5-year grazing experiment in the Northern Great Plains of the US. We tested whether grazing management treatments affect SIC, and whether grazing-induced SOC accrual was potentially offset by SIC loss. The experiment had a randomised complete block design and pretreatment data. Response variables were SOC and SIC stocks (0–60 cm depth). Moderate summer grazing (control) is regionally common and treatments that may alter soil stocks included: no grazing, severe summer grazing, moderate autumn grazing, and severe autumn grazing. We also tested for a negative relationship between SOC and SIC across all soil cores (<i>n</i> = 244). Severe grazing (summer and autumn) increased SOC by 0.83 and 0.88 kg × m<sup>−2</sup> relative to moderate summer grazing, respectively. However, no treatments affected SIC. Conversely, we found an overall weak but significant (<i>r</i><sup>2</sup> = 0.04, <i>P</i> = 0.002), near one-to-one negative relationship between SIC and SOC stocks of soil cores. Our findings suggest severe grazing can increase SOC without affecting SIC, at least over the short term (5 years). This finding mirrors results from an observational study elsewhere in the Northern Great Plains that also failed to detect grazing effects on SIC. Long-term grazing experiments (>5 years) with pretreatment data may be required to detect grazing effects on SIC.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/rj24006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In drylands, soil inorganic carbon (SIC) represents the largest terrestrial carbon sink, and observational studies indicate a negative relationship and possible trade-off between SIC (e.g. calcium carbonate [CaCO3]) and soil organic carbon (SOC). Some rangeland managers aim to increase SOC stocks to help decarbonise the atmosphere. Unfortunately, the fate of SIC (and SOC) is uncertain, and grazing-induced SOC accrual may correspond with CaCO3 dissolution, which can produce CO2 emissions. An added concern is whether carbon sequestration schemes focused on SOC stocks need to be discounted for putative CO2 emissions due to CaCO3 dissolution. We used data from a 5-year grazing experiment in the Northern Great Plains of the US. We tested whether grazing management treatments affect SIC, and whether grazing-induced SOC accrual was potentially offset by SIC loss. The experiment had a randomised complete block design and pretreatment data. Response variables were SOC and SIC stocks (0–60 cm depth). Moderate summer grazing (control) is regionally common and treatments that may alter soil stocks included: no grazing, severe summer grazing, moderate autumn grazing, and severe autumn grazing. We also tested for a negative relationship between SOC and SIC across all soil cores (n = 244). Severe grazing (summer and autumn) increased SOC by 0.83 and 0.88 kg × m−2 relative to moderate summer grazing, respectively. However, no treatments affected SIC. Conversely, we found an overall weak but significant (r2 = 0.04, P = 0.002), near one-to-one negative relationship between SIC and SOC stocks of soil cores. Our findings suggest severe grazing can increase SOC without affecting SIC, at least over the short term (5 years). This finding mirrors results from an observational study elsewhere in the Northern Great Plains that also failed to detect grazing effects on SIC. Long-term grazing experiments (>5 years) with pretreatment data may be required to detect grazing effects on SIC.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.