Enhancing cross-domain sentiment classification through multi-source collaborative training and selective ensemble methods

Chuanjun Zhao, Xinyi Yang, Xuzhuang Sun, Lihua Shen, Jing Gao, Yanjie Wang
{"title":"Enhancing cross-domain sentiment classification through multi-source collaborative training and selective ensemble methods","authors":"Chuanjun Zhao, Xinyi Yang, Xuzhuang Sun, Lihua Shen, Jing Gao, Yanjie Wang","doi":"10.1007/s11227-024-06391-4","DOIUrl":null,"url":null,"abstract":"<p>Due to the varying data distributions in different domains, transferring sentiment classification models across domains is often infeasible. Additionally, labeling data in specific domains can be both costly and time-consuming. To address these challenges, multi-source cross-domain sentiment classification leverages knowledge from multiple source domains to aid in sentiment classification in the target domain, utilizing labeled data from these sources. This paper introduces a novel multi-source cross-domain sentiment classification method that leverages collaborative training and selective ensemble classification. By utilizing unlabeled data from the target domain and labeled data from multiple source domains, our method reduces the need for manual labeling and enhances classification accuracy. Empirical evaluations on the Amazon multi-domain review dataset show that our approach achieves an average accuracy of 0.8932 ± 0.012 (0.95 confidence interval), demonstrating significant improvements in robustness and efficiency.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06391-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the varying data distributions in different domains, transferring sentiment classification models across domains is often infeasible. Additionally, labeling data in specific domains can be both costly and time-consuming. To address these challenges, multi-source cross-domain sentiment classification leverages knowledge from multiple source domains to aid in sentiment classification in the target domain, utilizing labeled data from these sources. This paper introduces a novel multi-source cross-domain sentiment classification method that leverages collaborative training and selective ensemble classification. By utilizing unlabeled data from the target domain and labeled data from multiple source domains, our method reduces the need for manual labeling and enhances classification accuracy. Empirical evaluations on the Amazon multi-domain review dataset show that our approach achieves an average accuracy of 0.8932 ± 0.012 (0.95 confidence interval), demonstrating significant improvements in robustness and efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多源协作训练和选择性集合方法加强跨域情感分类
由于不同领域的数据分布各不相同,跨领域转移情感分类模型往往是不可行的。此外,为特定领域的数据贴标签既费钱又费时。为了应对这些挑战,多源跨域情感分类利用了多个源域的知识,通过这些源域的标注数据来辅助目标域的情感分类。本文介绍了一种新颖的多源跨域情感分类方法,该方法利用了协同训练和选择性集合分类。通过利用来自目标域的未标记数据和来自多个源域的标记数据,我们的方法减少了人工标记的需要,提高了分类的准确性。在亚马逊多域评论数据集上进行的实证评估表明,我们的方法达到了 0.8932 ± 0.012(0.95 置信区间)的平均准确率,在鲁棒性和效率方面都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quadratic regression model to quantify certain latest corona treatment drug molecules based on coindices of M-polynomial Data integration from traditional to big data: main features and comparisons of ETL approaches End-to-end probability analysis method for multi-core distributed systems A cloud computing approach to superscale colored traveling salesman problems Approximating neural distinguishers using differential-linear imbalance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1