MaskAnyone Toolkit: Offering Strategies for Minimizing Privacy Risks and Maximizing Utility in Audio-Visual Data Archiving

Babajide Alamu Owoyele, Martin Schilling, Rohan Sawahn, Niklas Kaemer, Pavel Zherebenkov, Bhuvanesh Verma, Wim Pouw, Gerard de Melo
{"title":"MaskAnyone Toolkit: Offering Strategies for Minimizing Privacy Risks and Maximizing Utility in Audio-Visual Data Archiving","authors":"Babajide Alamu Owoyele, Martin Schilling, Rohan Sawahn, Niklas Kaemer, Pavel Zherebenkov, Bhuvanesh Verma, Wim Pouw, Gerard de Melo","doi":"arxiv-2408.03185","DOIUrl":null,"url":null,"abstract":"This paper introduces MaskAnyone, a novel toolkit designed to navigate some\nprivacy and ethical concerns of sharing audio-visual data in research.\nMaskAnyone offers a scalable, user-friendly solution for de-identifying\nindividuals in video and audio content through face-swapping and voice\nalteration, supporting multi-person masking and real-time bulk processing. By\nintegrating this tool within research practices, we aim to enhance data\nreproducibility and utility in social science research. Our approach draws on\nDesign Science Research, proposing that MaskAnyone can facilitate safer data\nsharing and potentially reduce the storage of fully identifiable data. We\ndiscuss the development and capabilities of MaskAnyone, explore its integration\ninto ethical research practices, and consider the broader implications of\naudio-visual data masking, including issues of consent and the risk of misuse.\nThe paper concludes with a preliminary evaluation framework for assessing the\neffectiveness and ethical integration of masking tools in such research\nsettings.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces MaskAnyone, a novel toolkit designed to navigate some privacy and ethical concerns of sharing audio-visual data in research. MaskAnyone offers a scalable, user-friendly solution for de-identifying individuals in video and audio content through face-swapping and voice alteration, supporting multi-person masking and real-time bulk processing. By integrating this tool within research practices, we aim to enhance data reproducibility and utility in social science research. Our approach draws on Design Science Research, proposing that MaskAnyone can facilitate safer data sharing and potentially reduce the storage of fully identifiable data. We discuss the development and capabilities of MaskAnyone, explore its integration into ethical research practices, and consider the broader implications of audio-visual data masking, including issues of consent and the risk of misuse. The paper concludes with a preliminary evaluation framework for assessing the effectiveness and ethical integration of masking tools in such research settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MaskAnyone 工具包:在视听数据存档中提供最小化隐私风险和最大化实用性的策略
MaskAnyone 提供了一个可扩展、用户友好的解决方案,可通过换脸和语音转换来消除视频和音频内容中的个人身份识别,支持多人屏蔽和实时批量处理。通过在研究实践中整合这一工具,我们旨在提高社会科学研究中数据的可重复性和实用性。我们的方法借鉴了设计科学研究(Design Science Research),提出 "任何人都能屏蔽"(MaskAnyone)可以促进更安全的数据共享,并有可能减少完全可识别数据的存储。我们讨论了 MaskAnyone 的开发和功能,探讨了将其纳入伦理研究实践的问题,并考虑了视听数据屏蔽的更广泛影响,包括同意问题和滥用风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1