Multitask and Multimodal Neural Tuning for Large Models

Hao Sun, Yu Song, Jihong Hu, Yen-Wei Chen, Lanfen Lin
{"title":"Multitask and Multimodal Neural Tuning for Large Models","authors":"Hao Sun, Yu Song, Jihong Hu, Yen-Wei Chen, Lanfen Lin","doi":"arxiv-2408.03001","DOIUrl":null,"url":null,"abstract":"In recent years, large-scale multimodal models have demonstrated impressive\ncapabilities across various domains. However, enabling these models to\neffectively perform multiple multimodal tasks simultaneously remains a\nsignificant challenge. To address this, we introduce a novel tuning method\ncalled neural tuning, designed to handle diverse multimodal tasks concurrently,\nincluding reasoning segmentation, referring segmentation, image captioning, and\ntext-to-image generation. Neural tuning emulates sparse distributed\nrepresentation in human brain, where only specific subsets of neurons are\nactivated for each task. Additionally, we present a new benchmark, MMUD, where\neach sample is annotated with multiple task labels. By applying neural tuning\nto pretrained large models on the MMUD benchmark, we achieve simultaneous task\nhandling in a streamlined and efficient manner. All models, code, and datasets\nwill be publicly available after publication, facilitating further research and\ndevelopment in this field.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, large-scale multimodal models have demonstrated impressive capabilities across various domains. However, enabling these models to effectively perform multiple multimodal tasks simultaneously remains a significant challenge. To address this, we introduce a novel tuning method called neural tuning, designed to handle diverse multimodal tasks concurrently, including reasoning segmentation, referring segmentation, image captioning, and text-to-image generation. Neural tuning emulates sparse distributed representation in human brain, where only specific subsets of neurons are activated for each task. Additionally, we present a new benchmark, MMUD, where each sample is annotated with multiple task labels. By applying neural tuning to pretrained large models on the MMUD benchmark, we achieve simultaneous task handling in a streamlined and efficient manner. All models, code, and datasets will be publicly available after publication, facilitating further research and development in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型模型的多任务和多模态神经调整
近年来,大规模多模态模型在各个领域都表现出令人印象深刻的能力。然而,让这些模型同时有效地执行多种多模态任务仍然是一个重大挑战。为了解决这个问题,我们引入了一种称为神经调谐的新型调谐方法,旨在同时处理多种多模态任务,包括推理分割、指代分割、图像字幕和文本到图像生成。神经调谐模拟了人脑中的稀疏分布式表示,即每个任务只激活特定的神经元子集。此外,我们还提出了一个新的基准--MMUD,其中每个样本都标注了多个任务标签。通过在 MMUD 基准上对预训练的大型模型进行神经调谐,我们以精简高效的方式实现了同步任务处理。所有模型、代码和数据集都将在发表后公开,以促进该领域的进一步研究和开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1