MMPKUBase: A Comprehensive and High-quality Chinese Multi-modal Knowledge Graph

Xuan Yi, Yanzeng Li, Lei Zou
{"title":"MMPKUBase: A Comprehensive and High-quality Chinese Multi-modal Knowledge Graph","authors":"Xuan Yi, Yanzeng Li, Lei Zou","doi":"arxiv-2408.01679","DOIUrl":null,"url":null,"abstract":"Multi-modal knowledge graphs have emerged as a powerful approach for\ninformation representation, combining data from different modalities such as\ntext, images, and videos. While several such graphs have been constructed and\nhave played important roles in applications like visual question answering and\nrecommendation systems, challenges persist in their development. These include\nthe scarcity of high-quality Chinese knowledge graphs and limited domain\ncoverage in existing multi-modal knowledge graphs. This paper introduces\nMMPKUBase, a robust and extensive Chinese multi-modal knowledge graph that\ncovers diverse domains, including birds, mammals, ferns, and more, comprising\nover 50,000 entities and over 1 million filtered images. To ensure data\nquality, we employ Prototypical Contrastive Learning and the Isolation Forest\nalgorithm to refine the image data. Additionally, we have developed a\nuser-friendly platform to facilitate image attribute exploration.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-modal knowledge graphs have emerged as a powerful approach for information representation, combining data from different modalities such as text, images, and videos. While several such graphs have been constructed and have played important roles in applications like visual question answering and recommendation systems, challenges persist in their development. These include the scarcity of high-quality Chinese knowledge graphs and limited domain coverage in existing multi-modal knowledge graphs. This paper introduces MMPKUBase, a robust and extensive Chinese multi-modal knowledge graph that covers diverse domains, including birds, mammals, ferns, and more, comprising over 50,000 entities and over 1 million filtered images. To ensure data quality, we employ Prototypical Contrastive Learning and the Isolation Forest algorithm to refine the image data. Additionally, we have developed a user-friendly platform to facilitate image attribute exploration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MMPKUBase:全面、高质量的中文多模态知识图谱
多模态知识图谱是一种强大的信息表征方法,它结合了文本、图像和视频等不同模态的数据。虽然已经构建了一些此类图谱,并在可视化问题解答和推荐系统等应用中发挥了重要作用,但其发展仍面临挑战。这些挑战包括高质量中文知识图谱的匮乏以及现有多模态知识图谱的领域覆盖范围有限。本文介绍的MMPKUBase是一个强大而广泛的中文多模态知识图谱,涵盖鸟类、哺乳动物、蕨类植物等多个领域,包含5万多个实体和100多万张过滤图片。为确保数据质量,我们采用了原型对比学习(Prototypical Contrastive Learning)和隔离森林算法(Isolation Foreststalgorithm)来完善图像数据。此外,我们还开发了用户友好型平台,方便用户探索图像属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1