{"title":"EV-TIFNet: lightweight binocular fusion network assisted by event camera time information for 3D human pose estimation","authors":"Xin Zhao, Lianping Yang, Wencong Huang, Qi Wang, Xin Wang, Yantao Lou","doi":"10.1007/s11554-024-01528-3","DOIUrl":null,"url":null,"abstract":"<p>Human pose estimation using RGB cameras often encounters performance degradation in challenging scenarios such as motion blur or suboptimal lighting. In comparison, event cameras, endowed with a wide dynamic range, microsecond-scale temporal resolution, minimal latency, and low power consumption, demonstrate remarkable adaptability in extreme visual environments. Nevertheless, the exploitation of event cameras for pose estimation in current research has not yet fully harnessed the potential of event-driven data, and enhancing model efficiency remains an ongoing pursuit. This work focuses on devising an efficient, compact pose estimation algorithm, with special attention on optimizing the fusion of multi-view event streams for improved pose prediction accuracy. We propose EV-TIFNet, a compact dual-view interactive network, which incorporates event frames along with our custom-designed Global Spatio-Temporal Feature Maps (GTF Maps). To enhance the network’s ability to understand motion characteristics and localize keypoints, we have tailored a dedicated Auxiliary Information Extraction Module (AIE Module) for the GTF Maps. Experimental results demonstrate that our model, with a compact parameter count of 0.55 million, achieves notable advancements on the DHP19 dataset, reducing the <span>\\(\\hbox {MPJPE}_{3D}\\)</span> to 61.45 mm. Building upon the sparsity of event data, the integration of sparse convolution operators replaces a significant portion of traditional convolutional layers, leading to a reduction in computational demand by 28.3%, totalling 8.71 GFLOPs. These design choices highlight the model’s suitability and efficiency in scenarios where computational resources are limited.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"85 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01528-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Human pose estimation using RGB cameras often encounters performance degradation in challenging scenarios such as motion blur or suboptimal lighting. In comparison, event cameras, endowed with a wide dynamic range, microsecond-scale temporal resolution, minimal latency, and low power consumption, demonstrate remarkable adaptability in extreme visual environments. Nevertheless, the exploitation of event cameras for pose estimation in current research has not yet fully harnessed the potential of event-driven data, and enhancing model efficiency remains an ongoing pursuit. This work focuses on devising an efficient, compact pose estimation algorithm, with special attention on optimizing the fusion of multi-view event streams for improved pose prediction accuracy. We propose EV-TIFNet, a compact dual-view interactive network, which incorporates event frames along with our custom-designed Global Spatio-Temporal Feature Maps (GTF Maps). To enhance the network’s ability to understand motion characteristics and localize keypoints, we have tailored a dedicated Auxiliary Information Extraction Module (AIE Module) for the GTF Maps. Experimental results demonstrate that our model, with a compact parameter count of 0.55 million, achieves notable advancements on the DHP19 dataset, reducing the \(\hbox {MPJPE}_{3D}\) to 61.45 mm. Building upon the sparsity of event data, the integration of sparse convolution operators replaces a significant portion of traditional convolutional layers, leading to a reduction in computational demand by 28.3%, totalling 8.71 GFLOPs. These design choices highlight the model’s suitability and efficiency in scenarios where computational resources are limited.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.