Li Liu, Kaiye Huang, Yuang Bai, Qifan Zhang, Yujian Li
{"title":"Real-time detection model of electrical work safety belt based on lightweight improved YOLOv5","authors":"Li Liu, Kaiye Huang, Yuang Bai, Qifan Zhang, Yujian Li","doi":"10.1007/s11554-024-01533-6","DOIUrl":null,"url":null,"abstract":"<p>Aiming at the issue that the existing aerial work safety belt wearing detection model cannot meet the real-time operation on edge devices, this paper proposes a lightweight aerial work safety belt detection model with higher accuracy. First, the model is made lightweight by introducing Ghost convolution and model pruning. Second, for complex scenarios involving occlusion, color confusion, etc., the model’s performance is optimized by introducing the new up-sampling operator, the attention mechanism, and the feature fusion network. Lastly, the model is trained using knowledge distillation to compensate for accuracy loss resulting from the lightweight design, thereby maintain a higher accuracy. Experimental results based on the Guangdong Power Grid Intelligence Challenge safety belt wearable dataset show that, in the comparison experiments, the improved model, compared with the mainstream object detection algorithm YOU ONLY LOOK ONCE v5s (YOLOv5s), has only 8.7% of the parameters of the former with only 3.7% difference in the mean Average Precision (mAP.50) metrics and the speed is improved by 100.4%. Meanwhile, the ablation experiments show that the improved model’s parameter count is reduced by 66.9% compared with the original model, while mAP.50 decreases by only 1.9%. The overhead safety belt detection model proposed in this paper combines the model’s lightweight design, SimAM attention mechanism, Bidirectional Feature Pyramid Network feature fusion network, Carafe operator, and knowledge distillation training strategy, enabling the model to maintain lightweight and real-time performance while achieving high detection accuracy.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"7 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01533-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at the issue that the existing aerial work safety belt wearing detection model cannot meet the real-time operation on edge devices, this paper proposes a lightweight aerial work safety belt detection model with higher accuracy. First, the model is made lightweight by introducing Ghost convolution and model pruning. Second, for complex scenarios involving occlusion, color confusion, etc., the model’s performance is optimized by introducing the new up-sampling operator, the attention mechanism, and the feature fusion network. Lastly, the model is trained using knowledge distillation to compensate for accuracy loss resulting from the lightweight design, thereby maintain a higher accuracy. Experimental results based on the Guangdong Power Grid Intelligence Challenge safety belt wearable dataset show that, in the comparison experiments, the improved model, compared with the mainstream object detection algorithm YOU ONLY LOOK ONCE v5s (YOLOv5s), has only 8.7% of the parameters of the former with only 3.7% difference in the mean Average Precision (mAP.50) metrics and the speed is improved by 100.4%. Meanwhile, the ablation experiments show that the improved model’s parameter count is reduced by 66.9% compared with the original model, while mAP.50 decreases by only 1.9%. The overhead safety belt detection model proposed in this paper combines the model’s lightweight design, SimAM attention mechanism, Bidirectional Feature Pyramid Network feature fusion network, Carafe operator, and knowledge distillation training strategy, enabling the model to maintain lightweight and real-time performance while achieving high detection accuracy.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.