FHFN: content and context feature hierarchical fusion networks for multi-focus image fusion

Pan Wu, Jin Tang
{"title":"FHFN: content and context feature hierarchical fusion networks for multi-focus image fusion","authors":"Pan Wu, Jin Tang","doi":"10.1007/s00371-024-03571-4","DOIUrl":null,"url":null,"abstract":"<p>Thanks to many current deep learning-based multi-focus image fusion methods have the defects of over-extracting image local features or neglecting image global features, these methods lead to final fused images with color distortion, small-area artifacts, large-area blurring, and unsoft boundary transitions. To solve these problems, we propose a new global and local feature hierarchical fusion network for multi-focus image fusion, called FHFN. The proposed FHFN is a deep neural network that simultaneously extracts global features using Swin Transformer and local features using ConvNeXt. On the one hand, we use the PSA module to enhance the focus on local features of images and effectively interact shallow features and high-level semantic features. On the other hand, we design the hierarchical fusion of extracted local features and global features by the hierarchical feature fusion module (HFFB), which constitutes a new image fusion task paradigm for solving multi-focus image fusion tasks. On the other hand, we introduce the gradient residual dense module (RGDB) to strengthen the edge features of images and improve the extraction capability of fine-grained spatial features of the network. Our method is competitive with ten other MFIF methods on four public datasets in terms of both objective quantitative metrics and subjective visual perception, and outperforms other MFIF methods in the same field.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03571-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thanks to many current deep learning-based multi-focus image fusion methods have the defects of over-extracting image local features or neglecting image global features, these methods lead to final fused images with color distortion, small-area artifacts, large-area blurring, and unsoft boundary transitions. To solve these problems, we propose a new global and local feature hierarchical fusion network for multi-focus image fusion, called FHFN. The proposed FHFN is a deep neural network that simultaneously extracts global features using Swin Transformer and local features using ConvNeXt. On the one hand, we use the PSA module to enhance the focus on local features of images and effectively interact shallow features and high-level semantic features. On the other hand, we design the hierarchical fusion of extracted local features and global features by the hierarchical feature fusion module (HFFB), which constitutes a new image fusion task paradigm for solving multi-focus image fusion tasks. On the other hand, we introduce the gradient residual dense module (RGDB) to strengthen the edge features of images and improve the extraction capability of fine-grained spatial features of the network. Our method is competitive with ten other MFIF methods on four public datasets in terms of both objective quantitative metrics and subjective visual perception, and outperforms other MFIF methods in the same field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FHFN:用于多焦点图像融合的内容和上下文特征分层融合网络
由于目前许多基于深度学习的多焦点图像融合方法存在过度提取图像局部特征或忽略图像全局特征的缺陷,这些方法导致最终融合后的图像存在色彩失真、小面积伪影、大面积模糊和边界过渡不柔和等问题。为了解决这些问题,我们提出了一种新的用于多焦点图像融合的全局和局部特征分层融合网络,称为 FHFN。所提出的 FHFN 是一种深度神经网络,可同时使用 Swin Transformer 提取全局特征,并使用 ConvNeXt 提取局部特征。一方面,我们利用 PSA 模块加强对图像局部特征的关注,并有效地将浅层特征与高层语义特征进行交互。另一方面,我们设计了分层特征融合模块(HFFB),将提取的局部特征与全局特征进行分层融合,构成了一种新的图像融合任务范式,用于解决多焦点图像融合任务。另一方面,我们引入梯度残差密集模块(RGDB)来强化图像边缘特征,提高网络细粒度空间特征的提取能力。在四个公开数据集上,我们的方法与其他十种 MFIF 方法在客观量化指标和主观视觉感知方面都具有竞争力,并优于同领域的其他 MFIF 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced deepfake detection with enhanced Resnet-18 and multilayer CNN max pooling Video-driven musical composition using large language model with memory-augmented state space 3D human pose estimation using spatiotemporal hypergraphs and its public benchmark on opera videos Topological structure extraction for computing surface–surface intersection curves Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1