Revealing the effect of annealing at Tg on the crystal growth in Au49Ag5.5Pd2.3Cu26.9Si16.3 metallic glass via nanocalorimetry

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Thermochimica Acta Pub Date : 2024-08-03 DOI:10.1016/j.tca.2024.179835
Chenhui Wang , Luojia Zhang , Jintao Luo , Bingjia Wu , Jun Yi , Yulai Gao , Bingge Zhao
{"title":"Revealing the effect of annealing at Tg on the crystal growth in Au49Ag5.5Pd2.3Cu26.9Si16.3 metallic glass via nanocalorimetry","authors":"Chenhui Wang ,&nbsp;Luojia Zhang ,&nbsp;Jintao Luo ,&nbsp;Bingjia Wu ,&nbsp;Jun Yi ,&nbsp;Yulai Gao ,&nbsp;Bingge Zhao","doi":"10.1016/j.tca.2024.179835","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, Au<sub>49</sub>Ag<sub>5.5</sub>Pd<sub>2.3</sub>Cu<sub>26.9</sub>Si<sub>16.3</sub> metallic glass is annealed at <em>T</em><sub>g</sub> and its impact on crystal growth is demonstrated with nanocalorimetry. With annealing following the rapid quenching, an amorphous phase free of nuclei, a relaxed amorphous phase, an amorphous phase with nuclei, and an amorphous phase with crystals are sequentially produced. With the reheating at rates ranging from 100 to 50,000 K/s, these four stages are quantitatively distinguished. Additionally, crystal growth behaviors of these four stages are demonstrated by the Kissinger and Mauro-Yue-Ellison-Gupta-Allan model. For the quenched and relaxed amorphous phases, the apparent crystallization activation energy (<em>E</em><sub>a</sub>) decreases with increasing heating rate, with a noticeable upward deviation at ultrahigh heating rates. When nuclei and crystals form in the amorphous phase, <em>E</em><sub>a</sub> keeps decreasing with the heating rate. As the annealing time increases, the maximum growth rate (<em>u</em><sub>max</sub>) exhibits a monotonic increase while the temperature corresponding to <em>u</em><sub>max</sub> displays a maximum.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179835"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124001746","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, Au49Ag5.5Pd2.3Cu26.9Si16.3 metallic glass is annealed at Tg and its impact on crystal growth is demonstrated with nanocalorimetry. With annealing following the rapid quenching, an amorphous phase free of nuclei, a relaxed amorphous phase, an amorphous phase with nuclei, and an amorphous phase with crystals are sequentially produced. With the reheating at rates ranging from 100 to 50,000 K/s, these four stages are quantitatively distinguished. Additionally, crystal growth behaviors of these four stages are demonstrated by the Kissinger and Mauro-Yue-Ellison-Gupta-Allan model. For the quenched and relaxed amorphous phases, the apparent crystallization activation energy (Ea) decreases with increasing heating rate, with a noticeable upward deviation at ultrahigh heating rates. When nuclei and crystals form in the amorphous phase, Ea keeps decreasing with the heating rate. As the annealing time increases, the maximum growth rate (umax) exhibits a monotonic increase while the temperature corresponding to umax displays a maximum.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过纳米焦度计揭示退火温度对 Au49Ag5.5Pd2.3Cu26.9Si16.3 金属玻璃晶体生长的影响
在这项研究中,对 AuAgPdCuSi 金属玻璃进行了退火,并用纳米焦度计证明了退火对晶体生长的影响。在快速淬火后的退火过程中,依次产生了无晶核的非晶相、松弛的非晶相、有晶核的非晶相以及有晶体的非晶相。以每秒 100 至 50,000 K 的速度重新加热时,这四个阶段可被定量区分开来。此外,基辛格和毛罗-岳-埃利森-古普塔-阿兰模型也证明了这四个阶段的晶体生长行为。对于淬火和松弛的无定形相,表观结晶活化能()随着加热速率的增加而降低,在超高加热速率下明显向上偏移。当无定形相中形成晶核和晶体时,表观结晶活化能()随加热速率的增加而降低。随着退火时间的增加,最大生长率()呈单调增长,而相应的温度则显示出最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thermochimica Acta
Thermochimica Acta 化学-分析化学
CiteScore
6.50
自引率
8.60%
发文量
210
审稿时长
40 days
期刊介绍: Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application. The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta. The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas: - New and improved instrumentation and methods - Thermal properties and behavior of materials - Kinetics of thermally stimulated processes
期刊最新文献
Sustainable humification of food waste slurry through thermally activated persulfate oxidation Molecular dynamics simulation of combustion reaction process and products of oxygen-containing functional groups in coal based on Machine Learning Potential Pyrolysis of industrial hemp biomass from contaminated soil phytoremediation: Kinetics, modelling transport phenomena and biochar-based metal reduction Effects of Cu(OH)F nanoparticles on the thermal oxidation and ignition characteristics of micron-sized Al powder Non-isothermal kinetic analysis of phase transformations in Fe-Co-V-Mo semi-hard magnetic alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1