Huck Stepanyants, Alan Beardon, Jeremy Paton and Dmitri Krioukov
{"title":"Computing distances on Riemann surfaces","authors":"Huck Stepanyants, Alan Beardon, Jeremy Paton and Dmitri Krioukov","doi":"10.1088/1751-8121/ad653a","DOIUrl":null,"url":null,"abstract":"Riemann surfaces are among the simplest and most basic geometric objects. They appear as key players in many branches of physics, mathematics, and other sciences. Despite their widespread significance, how to compute distances between pairs of points on compact Riemann surfaces is surprisingly unknown, unless the surface is a sphere or a torus. This is because on higher-genus surfaces, the distance formula involves an infimum over infinitely many terms, so it cannot be evaluated in practice. Here we derive a computable distance formula for a broad class of Riemann surfaces. The formula reduces the infimum to a minimum over an explicit set consisting of finitely many terms. We also develop a distance computation algorithm, which cannot be expressed as a formula, but which is more computationally efficient on surfaces with high genuses. We illustrate both the formula and the algorithm in application to generalized Bolza surfaces, which are a particular class of highly symmetric compact Riemann surfaces of any genus greater than 1.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"60 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad653a","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Riemann surfaces are among the simplest and most basic geometric objects. They appear as key players in many branches of physics, mathematics, and other sciences. Despite their widespread significance, how to compute distances between pairs of points on compact Riemann surfaces is surprisingly unknown, unless the surface is a sphere or a torus. This is because on higher-genus surfaces, the distance formula involves an infimum over infinitely many terms, so it cannot be evaluated in practice. Here we derive a computable distance formula for a broad class of Riemann surfaces. The formula reduces the infimum to a minimum over an explicit set consisting of finitely many terms. We also develop a distance computation algorithm, which cannot be expressed as a formula, but which is more computationally efficient on surfaces with high genuses. We illustrate both the formula and the algorithm in application to generalized Bolza surfaces, which are a particular class of highly symmetric compact Riemann surfaces of any genus greater than 1.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.