Yuchen Wen, Hang He, Yunxi Ma, Lorie Chen Cai, Huaquan Wang, Yanmei Li, Baobing Zhao, Zhigang Cai
{"title":"Computing hematopoietic stem and progenitor cell plasticity in response to genetic mutations and environmental stimulations","authors":"Yuchen Wen, Hang He, Yunxi Ma, Lorie Chen Cai, Huaquan Wang, Yanmei Li, Baobing Zhao, Zhigang Cai","doi":"10.1101/2024.08.02.606315","DOIUrl":null,"url":null,"abstract":"Cell plasticity (CP), describing a dynamic cell state, plays a crucial role in maintaining homeostasis during organ morphogenesis, regeneration and damage-to-repair biological process. Single-cell-omics datasets provide unprecedented resource to empowers analysis on CP. Hematopoiesis offers fertile opportunities to develop quantitative methods for understanding CP with rich supports from experimental ground-truths. In this study we generated high-quality lineage-negative (Lin<sup>−</sup>) single-cell RNA-sequencing datasets under various conditions and introduced a working pipeline named Snapdragon to interrogate naïve and disturbed plasticity of hematopoietic stem and progenitor cells (HSPCs) with mutational or environmental challenges. Utilizing embedding methods UMAP or FA, a continuum of hematopoietic development is visually observed in wildtype where the pipeline confirms a very low Proportion of hybrid-cells (<em>P<sub>hc</sub></em>, with bias range: 0.4-0.6) on a transition trajectory. Upon <em>Tet2</em> mutation, a driver of leukemia, or treatment of DSS, an inducer of colitis, <em>P<sub>hc</sub></em> is increased and plasticity of HSPCs was enhanced. Quantitative analysis indicates that <em>Tet2</em> mutation enhances HSC self-renewal capability while DSS treatment results in an enhanced myeloid-skewing trajectory, suggesting their similar but different consequences. We prioritized several transcription factors (i.e the EGR family) and signaling pathways (i.e. receptors IL1R1 and ADRB, inflammation and sympathy-sensing respectively) which are responsible for <em>P<sub>hc</sub></em> alterations. CellOracle-based simulation suggests that knocking-out EGR regulons or pathways of IL1R1 and ADRB partially reverses <em>P<sub>hc</sub></em> promoted by <em>Tet2</em> mutation and inflammation. In conclusion, the study provides high-quality datasets with single-cell transcriptomic matrices for diversified hematopoietic simulations and a computational pipeline Snapdragon for quantifying disturbed <em>P<sub>hc</sub></em> and CP. (247 words)","PeriodicalId":501269,"journal":{"name":"bioRxiv - Developmental Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.02.606315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cell plasticity (CP), describing a dynamic cell state, plays a crucial role in maintaining homeostasis during organ morphogenesis, regeneration and damage-to-repair biological process. Single-cell-omics datasets provide unprecedented resource to empowers analysis on CP. Hematopoiesis offers fertile opportunities to develop quantitative methods for understanding CP with rich supports from experimental ground-truths. In this study we generated high-quality lineage-negative (Lin−) single-cell RNA-sequencing datasets under various conditions and introduced a working pipeline named Snapdragon to interrogate naïve and disturbed plasticity of hematopoietic stem and progenitor cells (HSPCs) with mutational or environmental challenges. Utilizing embedding methods UMAP or FA, a continuum of hematopoietic development is visually observed in wildtype where the pipeline confirms a very low Proportion of hybrid-cells (Phc, with bias range: 0.4-0.6) on a transition trajectory. Upon Tet2 mutation, a driver of leukemia, or treatment of DSS, an inducer of colitis, Phc is increased and plasticity of HSPCs was enhanced. Quantitative analysis indicates that Tet2 mutation enhances HSC self-renewal capability while DSS treatment results in an enhanced myeloid-skewing trajectory, suggesting their similar but different consequences. We prioritized several transcription factors (i.e the EGR family) and signaling pathways (i.e. receptors IL1R1 and ADRB, inflammation and sympathy-sensing respectively) which are responsible for Phc alterations. CellOracle-based simulation suggests that knocking-out EGR regulons or pathways of IL1R1 and ADRB partially reverses Phc promoted by Tet2 mutation and inflammation. In conclusion, the study provides high-quality datasets with single-cell transcriptomic matrices for diversified hematopoietic simulations and a computational pipeline Snapdragon for quantifying disturbed Phc and CP. (247 words)