Precipitation Characteristics and Mechanisms over Sri Lanka against the Background of the Western Indian Ocean: 1981–2020

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-08-12 DOI:10.3390/atmos15080962
Dan Ye, Xin Wang, Yong Han, Yurong Zhang, Li Dong, Hao Luo, Xinxin Xie, Danya Xu
{"title":"Precipitation Characteristics and Mechanisms over Sri Lanka against the Background of the Western Indian Ocean: 1981–2020","authors":"Dan Ye, Xin Wang, Yong Han, Yurong Zhang, Li Dong, Hao Luo, Xinxin Xie, Danya Xu","doi":"10.3390/atmos15080962","DOIUrl":null,"url":null,"abstract":"In the current environment of climate change, the precipitation situation of marine islands is particularly valued. So, this study explores precipitation characteristics and mechanisms over Sri Lanka in the background of the western Indian Ocean using satellite and reanalysis datasets based on 40 years (from 1981 to 2020). The results show that the highest precipitation occurs between October and December, accounting for 46.3% of the entire year. The Indian Ocean sea surface temperature warming after 2002 significantly influences precipitation patterns. Particularly during the Second Inter-Monsoon, the western Indian Ocean warming induces an east–west zonal sea surface temperature gradient, leading to low-level circulation and westerly wind anomalies. This, in turn, results in increased precipitation in Sri Lanka between October and December. This study used the Trend-Free Pre-Whitening Mann–Kendall test and Sen’s slope estimator to study nine extreme precipitation indices, identifying a significant upward trend in extreme precipitation events in the Jaffna, arid northern Sri Lanka, peaking on 9 November 2021. This extreme event is due to the influence of weather systems like the Siberian High and intense convective activities, transporting substantial moisture to Jaffna from the Indian Ocean, the Arabian Sea, and the Bay of Bengal during winter. The findings highlight the impact of sea surface temperature warming anomalies in the western Indian Ocean and extreme precipitation events, anticipated to be more accentuated during Sri Lanka’s monsoon season. This research provides valuable insights into the variability of tropical precipitation, offering a scientific basis for the sustainable development of marine islands.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"198 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15080962","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the current environment of climate change, the precipitation situation of marine islands is particularly valued. So, this study explores precipitation characteristics and mechanisms over Sri Lanka in the background of the western Indian Ocean using satellite and reanalysis datasets based on 40 years (from 1981 to 2020). The results show that the highest precipitation occurs between October and December, accounting for 46.3% of the entire year. The Indian Ocean sea surface temperature warming after 2002 significantly influences precipitation patterns. Particularly during the Second Inter-Monsoon, the western Indian Ocean warming induces an east–west zonal sea surface temperature gradient, leading to low-level circulation and westerly wind anomalies. This, in turn, results in increased precipitation in Sri Lanka between October and December. This study used the Trend-Free Pre-Whitening Mann–Kendall test and Sen’s slope estimator to study nine extreme precipitation indices, identifying a significant upward trend in extreme precipitation events in the Jaffna, arid northern Sri Lanka, peaking on 9 November 2021. This extreme event is due to the influence of weather systems like the Siberian High and intense convective activities, transporting substantial moisture to Jaffna from the Indian Ocean, the Arabian Sea, and the Bay of Bengal during winter. The findings highlight the impact of sea surface temperature warming anomalies in the western Indian Ocean and extreme precipitation events, anticipated to be more accentuated during Sri Lanka’s monsoon season. This research provides valuable insights into the variability of tropical precipitation, offering a scientific basis for the sustainable development of marine islands.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
西印度洋背景下斯里兰卡上空的降水特征和机制:1981-2020 年
在当前气候变化的大环境下,海洋岛屿的降水状况尤为重要。因此,本研究利用基于 40 年(从 1981 年到 2020 年)的卫星和再分析数据集,探讨了西印度洋背景下斯里兰卡的降水特征和机制。结果表明,10 月至 12 月降水量最大,占全年降水量的 46.3%。2002 年后印度洋海面温度变暖对降水模式产生了显著影响。特别是在第二个季风间歇期,西印度洋变暖引起东西向地带性海面温度梯度,导致低层环流和西风异常。这反过来又导致斯里兰卡 10 月至 12 月降水量增加。本研究利用无趋势预灰化曼-肯德尔检验和森斜率估算器研究了九个极端降水指数,发现斯里兰卡北部干旱地区贾夫纳的极端降水事件呈显著上升趋势,并在 2021 年 11 月 9 日达到峰值。这一极端事件是由于西伯利亚高纬度和强对流活动等天气系统的影响,在冬季将大量水汽从印度洋、阿拉伯海和孟加拉湾输送到贾夫纳。研究结果突显了西印度洋海面温度变暖异常和极端降水事件的影响,预计在斯里兰卡季风季节会更加突出。这项研究为了解热带降水的多变性提供了宝贵的见解,为海洋岛屿的可持续发展提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1