{"title":"Investigation of the characteristics and performance of compatibilized PLA/PCL blends and their nanocomposites with nanocalcium carbonate","authors":"Mohammadmahdi Negaresh, Azizeh Javadi, Hamid Garmabi","doi":"10.1007/s10965-024-04098-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the preparation and characterization of Poly lactic acid (PLA)/Poly(ε-caprolactone) (PCL) blends with the addition of glycidyl methacrylate (GMA) as a chain extender, as well as nanocomposites of compatibilized and uncompatibilized PLA/PCL with nanocalcium carbonate (NCC). The blend compositions included 2 and 3 phr of GMA, while the nanocomposites contained 7 and 9 phr of NCC. The samples were processed via melt mixing, and their crystallinity, tensile properties, morphology, permeability, migration, and rheology were analyzed. The addition of 3 phr of GMA and 9 phr of NCC resulted in a significant increase in the tensile modulus of the PLA/PCL (75/25) blend from 1800 MPa (for neat PLA) to 3400 MPa. AFM analysis revealed that GMA improved the barrier properties of the PLA/PCL nanocomposite by reducing the roughness of the material. Furthermore, GMA and NCC promoted a higher degree of network formation within the polymer blend, as evidenced by a 4.5% increase in gel content. The incorporation of 9 phr of NCC increased the crystallinity of the PLA/PCL blend from 1.2% to 4.85%, although this effect was mitigated when GMA was also present. Interestingly, the simultaneous use of GMA and NCC significantly reduced the total migration of the material, resulting in a weight loss percentage of only 1.2%, compared to samples containing only one additive. Ultimately, the oxygen permeability of the compatibilized nanocomposite with 9 phr of NCC was measured at 60 <span>\\((\\frac{{\\text{cm}}^{3}\\text{mm}}{{\\text{m}}^{2}\\text{day atm}})\\)</span>, a value comparable to that of commonly used oil-based polymers such as PE and PP.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04098-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the preparation and characterization of Poly lactic acid (PLA)/Poly(ε-caprolactone) (PCL) blends with the addition of glycidyl methacrylate (GMA) as a chain extender, as well as nanocomposites of compatibilized and uncompatibilized PLA/PCL with nanocalcium carbonate (NCC). The blend compositions included 2 and 3 phr of GMA, while the nanocomposites contained 7 and 9 phr of NCC. The samples were processed via melt mixing, and their crystallinity, tensile properties, morphology, permeability, migration, and rheology were analyzed. The addition of 3 phr of GMA and 9 phr of NCC resulted in a significant increase in the tensile modulus of the PLA/PCL (75/25) blend from 1800 MPa (for neat PLA) to 3400 MPa. AFM analysis revealed that GMA improved the barrier properties of the PLA/PCL nanocomposite by reducing the roughness of the material. Furthermore, GMA and NCC promoted a higher degree of network formation within the polymer blend, as evidenced by a 4.5% increase in gel content. The incorporation of 9 phr of NCC increased the crystallinity of the PLA/PCL blend from 1.2% to 4.85%, although this effect was mitigated when GMA was also present. Interestingly, the simultaneous use of GMA and NCC significantly reduced the total migration of the material, resulting in a weight loss percentage of only 1.2%, compared to samples containing only one additive. Ultimately, the oxygen permeability of the compatibilized nanocomposite with 9 phr of NCC was measured at 60 \((\frac{{\text{cm}}^{3}\text{mm}}{{\text{m}}^{2}\text{day atm}})\), a value comparable to that of commonly used oil-based polymers such as PE and PP.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.