{"title":"A family of integrable maps associated with the Volterra lattice","authors":"A N W Hone, J A G Roberts and P Vanhaecke","doi":"10.1088/1361-6544/ad68ba","DOIUrl":null,"url":null,"abstract":"Recently Gubbiotti, Joshi, Tran and Viallet classified birational maps in four dimensions admitting two invariants (first integrals) with a particular degree structure, by considering recurrences of fourth order with a certain symmetry. The last three of the maps so obtained were shown to be Liouville integrable, in the sense of admitting a non-degenerate Poisson bracket with two first integrals in involution. Here we show how the first of these three Liouville integrable maps corresponds to genus 2 solutions of the infinite Volterra lattice, being the g = 2 case of a family of maps associated with the Stieltjes continued fraction expansion of a certain function on a hyperelliptic curve of genus . The continued fraction method provides explicit Hankel determinant formulae for tau functions of the solutions, together with an algebro-geometric description via a Lax representation for each member of the family, associating it with an algebraic completely integrable system. In particular, in the elliptic case (g = 1), as a byproduct we obtain Hankel determinant expressions for the solutions of the Somos-5 recurrence, but different to those previously derived by Chang, Hu and Xin. By applying contraction to the Stieltjes fraction, we recover integrable maps associated with Jacobi continued fractions on hyperelliptic curves, that one of us considered previously, as well as the Miura-type transformation between the Volterra and Toda lattices.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"23 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinearity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6544/ad68ba","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Recently Gubbiotti, Joshi, Tran and Viallet classified birational maps in four dimensions admitting two invariants (first integrals) with a particular degree structure, by considering recurrences of fourth order with a certain symmetry. The last three of the maps so obtained were shown to be Liouville integrable, in the sense of admitting a non-degenerate Poisson bracket with two first integrals in involution. Here we show how the first of these three Liouville integrable maps corresponds to genus 2 solutions of the infinite Volterra lattice, being the g = 2 case of a family of maps associated with the Stieltjes continued fraction expansion of a certain function on a hyperelliptic curve of genus . The continued fraction method provides explicit Hankel determinant formulae for tau functions of the solutions, together with an algebro-geometric description via a Lax representation for each member of the family, associating it with an algebraic completely integrable system. In particular, in the elliptic case (g = 1), as a byproduct we obtain Hankel determinant expressions for the solutions of the Somos-5 recurrence, but different to those previously derived by Chang, Hu and Xin. By applying contraction to the Stieltjes fraction, we recover integrable maps associated with Jacobi continued fractions on hyperelliptic curves, that one of us considered previously, as well as the Miura-type transformation between the Volterra and Toda lattices.
期刊介绍:
Aimed primarily at mathematicians and physicists interested in research on nonlinear phenomena, the journal''s coverage ranges from proofs of important theorems to papers presenting ideas, conjectures and numerical or physical experiments of significant physical and mathematical interest.
Subject coverage:
The journal publishes papers on nonlinear mathematics, mathematical physics, experimental physics, theoretical physics and other areas in the sciences where nonlinear phenomena are of fundamental importance. A more detailed indication is given by the subject interests of the Editorial Board members, which are listed in every issue of the journal.
Due to the broad scope of Nonlinearity, and in order to make all papers published in the journal accessible to its wide readership, authors are required to provide sufficient introductory material in their paper. This material should contain enough detail and background information to place their research into context and to make it understandable to scientists working on nonlinear phenomena.
Nonlinearity is a journal of the Institute of Physics and the London Mathematical Society.