{"title":"The Lorenz system as a gradient-like system","authors":"Jeremy P Parker","doi":"10.1088/1361-6544/ad68bb","DOIUrl":null,"url":null,"abstract":"We formulate, for continuous-time dynamical systems, a sufficient condition to be a gradient-like system, i.e. that all bounded trajectories approach stationary points and therefore that periodic orbits, chaotic attractors, etc do not exist. This condition is based upon the existence of an auxiliary function defined over the state space of the system, in a way analogous to a Lyapunov function for the stability of an equilibrium. For polynomial systems, Lyapunov functions can be found computationally by using sum-of-squares optimisation. We demonstrate this method by finding such an auxiliary function for the Lorenz system. We are able to show that the system is gradient-like for when σ = 10 and , significantly extending previous results. The results are rigorously validated by a novel procedure: First, an approximate numerical solution is found using finite-precision floating-point sum-of-squares optimisation. We then prove that there exists an exact solution close to this using interval arithmetic.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinearity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6544/ad68bb","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We formulate, for continuous-time dynamical systems, a sufficient condition to be a gradient-like system, i.e. that all bounded trajectories approach stationary points and therefore that periodic orbits, chaotic attractors, etc do not exist. This condition is based upon the existence of an auxiliary function defined over the state space of the system, in a way analogous to a Lyapunov function for the stability of an equilibrium. For polynomial systems, Lyapunov functions can be found computationally by using sum-of-squares optimisation. We demonstrate this method by finding such an auxiliary function for the Lorenz system. We are able to show that the system is gradient-like for when σ = 10 and , significantly extending previous results. The results are rigorously validated by a novel procedure: First, an approximate numerical solution is found using finite-precision floating-point sum-of-squares optimisation. We then prove that there exists an exact solution close to this using interval arithmetic.
期刊介绍:
Aimed primarily at mathematicians and physicists interested in research on nonlinear phenomena, the journal''s coverage ranges from proofs of important theorems to papers presenting ideas, conjectures and numerical or physical experiments of significant physical and mathematical interest.
Subject coverage:
The journal publishes papers on nonlinear mathematics, mathematical physics, experimental physics, theoretical physics and other areas in the sciences where nonlinear phenomena are of fundamental importance. A more detailed indication is given by the subject interests of the Editorial Board members, which are listed in every issue of the journal.
Due to the broad scope of Nonlinearity, and in order to make all papers published in the journal accessible to its wide readership, authors are required to provide sufficient introductory material in their paper. This material should contain enough detail and background information to place their research into context and to make it understandable to scientists working on nonlinear phenomena.
Nonlinearity is a journal of the Institute of Physics and the London Mathematical Society.