Sucrose as an electron source for cofactor regeneration in recombinant Escherichia coli expressing invertase and a Baeyer Villiger monooxygenase

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbial Cell Factories Pub Date : 2024-08-12 DOI:10.1186/s12934-024-02474-2
Lucija Sovic, Lenny Malihan-Yap, Gábor Szilveszter Tóth, Vilja Siitonen, Véronique Alphand, Yagut Allahverdiyeva, Robert Kourist
{"title":"Sucrose as an electron source for cofactor regeneration in recombinant Escherichia coli expressing invertase and a Baeyer Villiger monooxygenase","authors":"Lucija Sovic, Lenny Malihan-Yap, Gábor Szilveszter Tóth, Vilja Siitonen, Véronique Alphand, Yagut Allahverdiyeva, Robert Kourist","doi":"10.1186/s12934-024-02474-2","DOIUrl":null,"url":null,"abstract":"The large-scale biocatalytic application of oxidoreductases requires systems for a cost-effective and efficient regeneration of redox cofactors. These represent the major bottleneck for industrial bioproduction and an important cost factor. In this work, co-expression of the genes of invertase and a Baeyer–Villiger monooxygenase from Burkholderia xenovorans to E. coli W ΔcscR and E. coli BL21 (DE3) enabled efficient biotransformation of cyclohexanone to the polymer precursor, ε-caprolactone using sucrose as electron source for regeneration of redox cofactors, at rates comparable to glucose. E. coli W ΔcscR has a native csc regulon enabling sucrose utilization and is deregulated via deletion of the repressor gene (cscR), thus enabling sucrose uptake even at concentrations below 6 mM (2 g L−1). On the other hand, E. coli BL21 (DE3), which is widely used as an expression host does not contain a csc regulon. Herein, we show a proof of concept where the co-expression of invertase for both E. coli hosts was sufficient for efficient sucrose utilization to sustain cofactor regeneration in the Baeyer–Villiger oxidation of cyclohexanone. Using E. coli W ΔcscR, a specific activity of 37 U gDCW−1 was obtained, demonstrating the suitability of the strain for recombinant gene co-expression and subsequent whole-cell biotransformation. In addition, the same co-expression cassette was transferred and investigated with E. coli BL21 (DE3), which showed a specific activity of 17 U gDCW− 1. Finally, biotransformation using photosynthetically-derived sucrose from Synechocystis S02 with E. coli W ΔcscR expressing BVMO showed complete conversion of cyclohexanone after 3 h, especially with the strain expressing the invertase gene in the periplasm. Results show that sucrose can be an alternative electron source to drive whole-cell biotransformations in recombinant E. coli strains opening novel strategies for sustainable chemical production. ","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02474-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The large-scale biocatalytic application of oxidoreductases requires systems for a cost-effective and efficient regeneration of redox cofactors. These represent the major bottleneck for industrial bioproduction and an important cost factor. In this work, co-expression of the genes of invertase and a Baeyer–Villiger monooxygenase from Burkholderia xenovorans to E. coli W ΔcscR and E. coli BL21 (DE3) enabled efficient biotransformation of cyclohexanone to the polymer precursor, ε-caprolactone using sucrose as electron source for regeneration of redox cofactors, at rates comparable to glucose. E. coli W ΔcscR has a native csc regulon enabling sucrose utilization and is deregulated via deletion of the repressor gene (cscR), thus enabling sucrose uptake even at concentrations below 6 mM (2 g L−1). On the other hand, E. coli BL21 (DE3), which is widely used as an expression host does not contain a csc regulon. Herein, we show a proof of concept where the co-expression of invertase for both E. coli hosts was sufficient for efficient sucrose utilization to sustain cofactor regeneration in the Baeyer–Villiger oxidation of cyclohexanone. Using E. coli W ΔcscR, a specific activity of 37 U gDCW−1 was obtained, demonstrating the suitability of the strain for recombinant gene co-expression and subsequent whole-cell biotransformation. In addition, the same co-expression cassette was transferred and investigated with E. coli BL21 (DE3), which showed a specific activity of 17 U gDCW− 1. Finally, biotransformation using photosynthetically-derived sucrose from Synechocystis S02 with E. coli W ΔcscR expressing BVMO showed complete conversion of cyclohexanone after 3 h, especially with the strain expressing the invertase gene in the periplasm. Results show that sucrose can be an alternative electron source to drive whole-cell biotransformations in recombinant E. coli strains opening novel strategies for sustainable chemical production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蔗糖是重组大肠杆菌表达转化酶和 Baeyer Villiger 单氧化酶时辅助因子再生的电子源
氧化还原酶的大规模生物催化应用需要经济高效的氧化还原辅助因子再生系统。这些是工业生物生产的主要瓶颈,也是重要的成本因素。在这项工作中,将 Burkholderia xenovorans 的转化酶基因和 Baeyer-Villiger 单加氧酶基因共同表达到大肠杆菌 W ΔcscR 和大肠杆菌 BL21 (DE3) 中,利用蔗糖作为氧化还原辅助因子再生的电子源,实现了环己酮到聚合物前体ε-己内酯的高效生物转化,转化率与葡萄糖相当。大肠杆菌 W ΔcscR 有一个能利用蔗糖的原生 csc 调节子,它通过删除抑制基因(cscR)而失调,因此即使在浓度低于 6 mM(2 g L-1)时也能吸收蔗糖。另一方面,被广泛用作表达宿主的大肠杆菌 BL21(DE3)不含 csc 调节子。在这里,我们展示了一个概念证明,即两种大肠杆菌宿主共同表达转化酶足以高效利用蔗糖,以维持环己酮拜耳-维里格氧化过程中辅助因子的再生。使用大肠杆菌 W ΔcscR,可获得 37 U gDCW-1 的特异性活性,这表明该菌株适用于重组基因共表达和随后的全细胞生物转化。此外,用大肠杆菌 BL21(DE3)转入相同的共表达盒并进行了研究,结果显示其特异性活性为 17 U gDCW-1。最后,用大肠杆菌 W ΔcscR 表达 BVMO 与来自 Synechocystis S02 的光合蔗糖进行生物转化,结果表明 3 小时后环己酮完全转化,尤其是外质中表达转化酶基因的菌株。研究结果表明,蔗糖可以作为一种替代电子源,驱动重组大肠杆菌菌株的全细胞生物转化,为可持续化学品生产开辟了新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
期刊最新文献
De novo biosynthesis of β-Arbutin in Komagataella phaffii based on metabolic engineering strategies. The influence of growth rate-controlling feeding strategy on the surfactin production in Bacillus subtilis bioreactor processes. Novel nanoconjugates of metal oxides and natural red pigment from the endophyte Monascus ruber using solid-state fermentation. Continuous production of chitooligosaccharides in a column reactor by the PUF-immobilized whole cell enzymes of Mucor circinelloides IBT-83. Correction: Enhancement of vitamin B6 production driven by omics analysis combined with fermentation optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1