Influence of Al foil interlayer on performance of vacuum diffusion bonding joint of 6061 aluminium alloy

Da-shuang Liu, Jian-hua Xu, Xiong-hui Li, Ping Wei, Yun Liang, Jian Qin, Hua-wei Sun, Tian-ran Ding, Zong-ye Ding, Su-juan Zhong, Lei Zhang, Wei-min Long
{"title":"Influence of Al foil interlayer on performance of vacuum diffusion bonding joint of 6061 aluminium alloy","authors":"Da-shuang Liu, Jian-hua Xu, Xiong-hui Li, Ping Wei, Yun Liang, Jian Qin, Hua-wei Sun, Tian-ran Ding, Zong-ye Ding, Su-juan Zhong, Lei Zhang, Wei-min Long","doi":"10.1007/s42243-024-01302-6","DOIUrl":null,"url":null,"abstract":"<p>The vacuum diffusion bonding method was used to introduce Al foil as the middle layer, and 6061 aluminium alloy was vacuum diffusion bonding together. The typical microstructure characteristics and mechanical properties of 6061/Al/6061 welded joints were studied in detail, the effects of process parameters and Al intermediate layer on the microstructure and mechanical properties were revealed, and the diffusion bonding mechanism of 6061/Al/6061 welded joints was described. Al foil middle layer welded joint had the best performance at the temperature of 540 °C, the holding time of 120 min, and the welding pressure of 4 MPa. The bonding ratio is 95.91%, the shear strength is 79 MPa, and the deformation rate is 8.05%, and the introduction of Al intermediate layer improves the element distribution and microstructure, so that the bonding ratio of the welded joint is increased by 10.86%, the shear strength is increased by 5.55 MPa, and the deformation rate is reduced by 1.58%. The fracture morphology has typical ductile fracture characteristics.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01302-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The vacuum diffusion bonding method was used to introduce Al foil as the middle layer, and 6061 aluminium alloy was vacuum diffusion bonding together. The typical microstructure characteristics and mechanical properties of 6061/Al/6061 welded joints were studied in detail, the effects of process parameters and Al intermediate layer on the microstructure and mechanical properties were revealed, and the diffusion bonding mechanism of 6061/Al/6061 welded joints was described. Al foil middle layer welded joint had the best performance at the temperature of 540 °C, the holding time of 120 min, and the welding pressure of 4 MPa. The bonding ratio is 95.91%, the shear strength is 79 MPa, and the deformation rate is 8.05%, and the introduction of Al intermediate layer improves the element distribution and microstructure, so that the bonding ratio of the welded joint is increased by 10.86%, the shear strength is increased by 5.55 MPa, and the deformation rate is reduced by 1.58%. The fracture morphology has typical ductile fracture characteristics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铝箔夹层对 6061 铝合金真空扩散粘接接头性能的影响
采用真空扩散粘接法引入铝箔作为中间层,与 6061 铝合金进行真空扩散粘接。详细研究了 6061/Al/6061 焊接接头的典型显微组织特征和力学性能,揭示了工艺参数和铝中间层对显微组织和力学性能的影响,并阐述了 6061/Al/6061 焊接接头的扩散结合机理。在温度为 540 ℃、保温时间为 120 min、焊接压力为 4 MPa 的条件下,铝箔中间层焊接接头的性能最佳。铝中间层的引入改善了元素分布和微观结构,使焊接接头的结合率提高了 10.86%,剪切强度提高了 5.55 MPa,变形率降低了 1.58%。断口形态具有典型的韧性断口特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
16.00%
发文量
161
审稿时长
2.8 months
期刊介绍: Publishes critically reviewed original research of archival significance Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..
期刊最新文献
Enhanced steelmaking cost optimization and real-time alloying element yield prediction: a ferroalloy model based on machine learning and linear programming Effect of Zr on microstructure and mechanical properties of 304 stainless steel joints brazed by Ag–Cu–Sn–In filler metal Effect of reaction time on interaction between steel with and without La and MgO–C refractory Mechanical behavior of GH4720Li nickel-based alloy at intermediate temperature for different strain rates Corrosion and passive behavior of SLM and wrought TA15 titanium alloys in hydrochloric acid solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1