Emily J. Furlong, Ian-Blaine P. Reininger-Chatzigiannakis, Yi C. Zeng, Simon H. J. Brown, Meghna Sobti, Alastair G. Stewart
{"title":"The molecular structure of an axle-less F1-ATPase","authors":"Emily J. Furlong, Ian-Blaine P. Reininger-Chatzigiannakis, Yi C. Zeng, Simon H. J. Brown, Meghna Sobti, Alastair G. Stewart","doi":"10.1101/2024.08.08.607276","DOIUrl":null,"url":null,"abstract":"F<sub>1</sub>F<sub>o</sub> ATP synthase is a molecular rotary motor that can generate ATP using a transmembrane proton motive force. Isolated F<sub>1</sub>-ATPase catalytic cores can hydrolyse ATP, passing through a series of conformational states involving rotation of the central γ rotor subunit and the opening and closing of the catalytic β subunits. Cooperativity in F<sub>1</sub>-ATPase has long thought to be conferred through the γ subunit, with three key interaction sites between the γ and β subunits being identified. Single molecule studies have demonstrated that the F<sub>1</sub> complexes lacking the γ axle still “rotate” and hydrolyse ATP, but with less efficiency. We solved the cryogenic electron microscopy structure of an axle-less <em>Bacillus</em> sp. PS3 F<sub>1</sub>-ATPase. The unexpected binding-dwell conformation of the structure in combination with the observed lack of interactions between the axle-less γ and the open β subunit suggests that the complete γ subunit is important for coordinating efficient ATP binding of F<sub>1</sub>-ATPase.","PeriodicalId":501147,"journal":{"name":"bioRxiv - Biochemistry","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.08.607276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
F1Fo ATP synthase is a molecular rotary motor that can generate ATP using a transmembrane proton motive force. Isolated F1-ATPase catalytic cores can hydrolyse ATP, passing through a series of conformational states involving rotation of the central γ rotor subunit and the opening and closing of the catalytic β subunits. Cooperativity in F1-ATPase has long thought to be conferred through the γ subunit, with three key interaction sites between the γ and β subunits being identified. Single molecule studies have demonstrated that the F1 complexes lacking the γ axle still “rotate” and hydrolyse ATP, but with less efficiency. We solved the cryogenic electron microscopy structure of an axle-less Bacillus sp. PS3 F1-ATPase. The unexpected binding-dwell conformation of the structure in combination with the observed lack of interactions between the axle-less γ and the open β subunit suggests that the complete γ subunit is important for coordinating efficient ATP binding of F1-ATPase.