Attention-based supervised contrastive learning on fine-grained image classification

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Analysis and Applications Pub Date : 2024-08-06 DOI:10.1007/s10044-024-01317-5
Qian Li, Weining Wu
{"title":"Attention-based supervised contrastive learning on fine-grained image classification","authors":"Qian Li, Weining Wu","doi":"10.1007/s10044-024-01317-5","DOIUrl":null,"url":null,"abstract":"<p>To solve the problem of fine-grained image classification performance caused by intra-class diversity and inter-class similarity in fine-grained images, we propose an Attention-based Supervised Contrastive (ASC) algorithm for fine-grained image classification. The method involves three stages: firstly, local parts are generated by a multi-attention module for constructing contrastive objectives to filter useless background information; an attention-based supervised contrastive framework is introduced to pre-train an encoder network and learn generalized features by pulling positive pairs closer while pushing negatives apart. Finally, we use cross-entropy to fine-tune the model pre-trained in the second stage to obtain classification results. Comprehensive experiments on CUB-200-2011, FGVC-Aircraft, and Stanford Cars datasets demonstrate the effectiveness of the proposed method.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"26 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01317-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the problem of fine-grained image classification performance caused by intra-class diversity and inter-class similarity in fine-grained images, we propose an Attention-based Supervised Contrastive (ASC) algorithm for fine-grained image classification. The method involves three stages: firstly, local parts are generated by a multi-attention module for constructing contrastive objectives to filter useless background information; an attention-based supervised contrastive framework is introduced to pre-train an encoder network and learn generalized features by pulling positive pairs closer while pushing negatives apart. Finally, we use cross-entropy to fine-tune the model pre-trained in the second stage to obtain classification results. Comprehensive experiments on CUB-200-2011, FGVC-Aircraft, and Stanford Cars datasets demonstrate the effectiveness of the proposed method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于注意力的精细图像分类监督对比学习
为了解决细粒度图像中类内多样性和类间相似性导致的细粒度图像分类性能问题,我们提出了一种用于细粒度图像分类的基于注意力的监督对比(ASC)算法。该方法包括三个阶段:首先,由多注意力模块生成局部,用于构建对比目标,以过滤无用的背景信息;引入基于注意力的监督对比框架,对编码器网络进行预训练,并通过拉近正像对和拉远负像对来学习广义特征。最后,我们利用交叉熵对第二阶段预训练的模型进行微调,从而获得分类结果。在 CUB-200-2011、FGVC-Aircraft 和斯坦福汽车数据集上进行的综合实验证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Analysis and Applications
Pattern Analysis and Applications 工程技术-计算机:人工智能
CiteScore
7.40
自引率
2.60%
发文量
76
审稿时长
13.5 months
期刊介绍: The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.
期刊最新文献
TabMixer: advancing tabular data analysis with an enhanced MLP-mixer approach. Animal re-identification in video through track clustering. K-BEST subspace clustering: kernel-friendly block-diagonal embedded and similarity-preserving transformed subspace clustering Research on decoupled adaptive graph convolution networks based on skeleton data for action recognition Hidden Markov models with multivariate bounded asymmetric student’s t-mixture model emissions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1