LimbNET: collaborative platform for simulating spatial patterns of gene networks in limb development

Antoni Matyjaszkiewicz, James Sharpe
{"title":"LimbNET: collaborative platform for simulating spatial patterns of gene networks in limb development","authors":"Antoni Matyjaszkiewicz, James Sharpe","doi":"10.1101/2024.08.07.607075","DOIUrl":null,"url":null,"abstract":"Successful computational modelling of complex biological phenomena will depend on the seamless sharing of models and hypotheses among researchers of all backgrounds - experimental and theoretical. LimbNET, a new online tool for modelling, simulating and visualising spatiotemporal patterning in limb development, aims to facilitate this process within the limb development community. LimbNET enables remote users to define and simulate arbitrary gene regulatory network (GRN) models of 2D spatiotemporal developmental patterning processes. Researchers can test and compare each others' hypotheses - GRNs and predicted spatiotemporal patterns - within a common framework. A database of previously created models empowers users to simulate, explore, and extend each others' work. Spatiotemporally-varying gene expression intensities, derived from image-based data, are mapped into a standardised computational description of limb growth, integrated within our modelling framework. This enables direct comparison not only between datasets but between data and simulation outputs, closing the feedback loop between experiments and simulation via parameter optimisation. All functionality is accessible through a web browser, requiring no special software, and opening the field of image-driven modelling to the full scientific community.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"200 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.607075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Successful computational modelling of complex biological phenomena will depend on the seamless sharing of models and hypotheses among researchers of all backgrounds - experimental and theoretical. LimbNET, a new online tool for modelling, simulating and visualising spatiotemporal patterning in limb development, aims to facilitate this process within the limb development community. LimbNET enables remote users to define and simulate arbitrary gene regulatory network (GRN) models of 2D spatiotemporal developmental patterning processes. Researchers can test and compare each others' hypotheses - GRNs and predicted spatiotemporal patterns - within a common framework. A database of previously created models empowers users to simulate, explore, and extend each others' work. Spatiotemporally-varying gene expression intensities, derived from image-based data, are mapped into a standardised computational description of limb growth, integrated within our modelling framework. This enables direct comparison not only between datasets but between data and simulation outputs, closing the feedback loop between experiments and simulation via parameter optimisation. All functionality is accessible through a web browser, requiring no special software, and opening the field of image-driven modelling to the full scientific community.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LimbNET:模拟肢体发育过程中基因网络空间模式的协作平台
复杂生物现象的成功计算建模取决于各种背景的研究人员(实验和理论)之间无缝共享模型和假设。LimbNET 是一种用于肢体发育时空模式建模、模拟和可视化的新型在线工具,旨在促进肢体发育领域的这一进程。LimbNET 使远程用户能够定义和模拟二维时空发育模式化过程的任意基因调控网络 (GRN) 模型。研究人员可以在一个共同的框架内测试和比较彼此的假设--基因调控网络和预测的时空模式。以前创建的模型数据库使用户能够模拟、探索和扩展彼此的工作。基于图像数据的时空变化基因表达强度被映射到肢体生长的标准化计算描述中,并集成到我们的建模框架中。这不仅能在数据集之间进行直接比较,还能在数据和模拟输出之间进行直接比较,通过参数优化来关闭实验和模拟之间的反馈回路。所有功能均可通过网络浏览器访问,无需特殊软件,为整个科学界打开了图像驱动建模领域的大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Cytokine Networks in Ulcerative Colitis to Identify Pathogenic Mechanisms and Therapeutic Targets High-content microscopy and machine learning characterize a cell morphology signature of NF1 genotype in Schwann cells Tissue-specific metabolomic signatures for a doublesex model of reduced sexual dimorphism Sequential design of single-cell experiments to identify discrete stochastic models for gene expression. Environment-mediated interactions cause an externalized and collective memory in microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1