Neha Khetan, Binyamin Zuckerman, Giuliana P Calia, Xinyue Chen, Ximena Garcia Arceo, Leor S Weinberger
{"title":"Quantitative comparison of single-cell RNA sequencing versus single-molecule RNA imaging for quantifying transcriptional noise","authors":"Neha Khetan, Binyamin Zuckerman, Giuliana P Calia, Xinyue Chen, Ximena Garcia Arceo, Leor S Weinberger","doi":"10.1101/2024.08.09.607289","DOIUrl":null,"url":null,"abstract":"Stochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability. However, how best to quantify genome wide noise, remains unclear. Here we utilize a small-molecule perturbation (IdU) to amplify noise and assess noise quantification from numerous scRNA-seq algorithms on human and mouse datasets, and then compare to noise quantification from single-molecule RNA FISH (smFISH) for a panel of representative genes. We find that various scRNA-seq analyses report amplified noise, without altered mean-expression levels, for ~90% of genes and that smFISH analysis verifies noise amplification for the vast majority of genes tested. Collectively, the analyses suggest that most scRNA-seq algorithms are appropriate for quantifying noise including a simple normalization approach, although all of these systematically underestimate noise compared to smFISH. From a practical standpoint, this analysis argues that IdU is a globally penetrant noise-enhancer molecule-amplifying noise without altering mean-expression levels-which could enable investigations of the physiological impacts of transcriptional noise.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.09.607289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Stochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability. However, how best to quantify genome wide noise, remains unclear. Here we utilize a small-molecule perturbation (IdU) to amplify noise and assess noise quantification from numerous scRNA-seq algorithms on human and mouse datasets, and then compare to noise quantification from single-molecule RNA FISH (smFISH) for a panel of representative genes. We find that various scRNA-seq analyses report amplified noise, without altered mean-expression levels, for ~90% of genes and that smFISH analysis verifies noise amplification for the vast majority of genes tested. Collectively, the analyses suggest that most scRNA-seq algorithms are appropriate for quantifying noise including a simple normalization approach, although all of these systematically underestimate noise compared to smFISH. From a practical standpoint, this analysis argues that IdU is a globally penetrant noise-enhancer molecule-amplifying noise without altering mean-expression levels-which could enable investigations of the physiological impacts of transcriptional noise.