Quantitative comparison of single-cell RNA sequencing versus single-molecule RNA imaging for quantifying transcriptional noise

Neha Khetan, Binyamin Zuckerman, Giuliana P Calia, Xinyue Chen, Ximena Garcia Arceo, Leor S Weinberger
{"title":"Quantitative comparison of single-cell RNA sequencing versus single-molecule RNA imaging for quantifying transcriptional noise","authors":"Neha Khetan, Binyamin Zuckerman, Giuliana P Calia, Xinyue Chen, Ximena Garcia Arceo, Leor S Weinberger","doi":"10.1101/2024.08.09.607289","DOIUrl":null,"url":null,"abstract":"Stochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability. However, how best to quantify genome wide noise, remains unclear. Here we utilize a small-molecule perturbation (IdU) to amplify noise and assess noise quantification from numerous scRNA-seq algorithms on human and mouse datasets, and then compare to noise quantification from single-molecule RNA FISH (smFISH) for a panel of representative genes. We find that various scRNA-seq analyses report amplified noise, without altered mean-expression levels, for ~90% of genes and that smFISH analysis verifies noise amplification for the vast majority of genes tested. Collectively, the analyses suggest that most scRNA-seq algorithms are appropriate for quantifying noise including a simple normalization approach, although all of these systematically underestimate noise compared to smFISH. From a practical standpoint, this analysis argues that IdU is a globally penetrant noise-enhancer molecule-amplifying noise without altering mean-expression levels-which could enable investigations of the physiological impacts of transcriptional noise.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.09.607289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability. However, how best to quantify genome wide noise, remains unclear. Here we utilize a small-molecule perturbation (IdU) to amplify noise and assess noise quantification from numerous scRNA-seq algorithms on human and mouse datasets, and then compare to noise quantification from single-molecule RNA FISH (smFISH) for a panel of representative genes. We find that various scRNA-seq analyses report amplified noise, without altered mean-expression levels, for ~90% of genes and that smFISH analysis verifies noise amplification for the vast majority of genes tested. Collectively, the analyses suggest that most scRNA-seq algorithms are appropriate for quantifying noise including a simple normalization approach, although all of these systematically underestimate noise compared to smFISH. From a practical standpoint, this analysis argues that IdU is a globally penetrant noise-enhancer molecule-amplifying noise without altering mean-expression levels-which could enable investigations of the physiological impacts of transcriptional noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞 RNA 测序与单分子 RNA 成像在量化转录噪声方面的定量比较
转录中的随机波动(噪声)会产生细胞间的巨大差异。然而,如何最好地量化基因组范围内的噪声仍不清楚。在这里,我们利用小分子扰动(IdU)来放大噪声,并对人类和小鼠数据集上的多种 scRNA-seq 算法的噪声量化进行评估,然后与单分子 RNA FISH(smFISH)对一组代表性基因的噪声量化进行比较。我们发现,各种 scRNA-seq 分析报告了约 90% 的基因的噪声被放大,但平均表达水平没有改变,而 smFISH 分析验证了绝大多数受测基因的噪声被放大。总之,分析表明,大多数 scRNA-seq 算法都适合量化噪声,包括简单的归一化方法,尽管与 smFISH 相比,所有这些算法都系统性地低估了噪声。从实用的角度来看,这项分析表明 IdU 是一种具有全局渗透性的噪声增强分子--在不改变平均表达水平的情况下增强噪声--这有助于研究转录噪声的生理影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Cytokine Networks in Ulcerative Colitis to Identify Pathogenic Mechanisms and Therapeutic Targets High-content microscopy and machine learning characterize a cell morphology signature of NF1 genotype in Schwann cells Tissue-specific metabolomic signatures for a doublesex model of reduced sexual dimorphism Sequential design of single-cell experiments to identify discrete stochastic models for gene expression. Environment-mediated interactions cause an externalized and collective memory in microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1