Re-evaluating Retrosynthesis Algorithms with Syntheseus

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-05 DOI:10.1039/d4fd00093e
Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gainski, Philipp Seidl, Marwin Segler
{"title":"Re-evaluating Retrosynthesis Algorithms with Syntheseus","authors":"Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gainski, Philipp Seidl, Marwin Segler","doi":"10.1039/d4fd00093e","DOIUrl":null,"url":null,"abstract":"Automated Synthesis Planning has recently re-emerged as a research area at the intersection of chemistry and machine learning. Despite the appearance of steady progress, we argue that imperfect benchmarks and inconsistent comparisons mask systematic shortcomings of existing techniques, and unnecessarily hamper progress. To remedy this, we present a synthesis planning library with an extensive benchmarking framework, called Syntheseus, which promotes best practice by default, enabling consistent meaningful evaluation of single step and multi-step synthesis planning algorithms. We demonstrate the capabilities of syntheseus by re-evaluating several previous retrosynthesis algorithms, and find that the ranking of state-of-the-art models changes in controlled evaluation experiments. We end with guidance for future works in this area, and call the community to engage in the discussion on how to improve benchmarks for synthesis planning.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00093e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Automated Synthesis Planning has recently re-emerged as a research area at the intersection of chemistry and machine learning. Despite the appearance of steady progress, we argue that imperfect benchmarks and inconsistent comparisons mask systematic shortcomings of existing techniques, and unnecessarily hamper progress. To remedy this, we present a synthesis planning library with an extensive benchmarking framework, called Syntheseus, which promotes best practice by default, enabling consistent meaningful evaluation of single step and multi-step synthesis planning algorithms. We demonstrate the capabilities of syntheseus by re-evaluating several previous retrosynthesis algorithms, and find that the ranking of state-of-the-art models changes in controlled evaluation experiments. We end with guidance for future works in this area, and call the community to engage in the discussion on how to improve benchmarks for synthesis planning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用 Syntheseus 重新评估逆合成算法
自动合成规划最近再次成为化学与机器学习交叉领域的研究热点。尽管看起来取得了稳步进展,但我们认为,不完善的基准和不一致的比较掩盖了现有技术的系统性缺陷,不必要地阻碍了进展。为了弥补这一缺陷,我们提出了一个具有广泛基准测试框架的合成规划库,名为 Syntheseus,它在默认情况下提倡最佳实践,能够对单步和多步合成规划算法进行一致而有意义的评估。我们通过重新评估之前的几种逆合成算法来证明 Syntheseus 的能力,并发现在受控评估实验中,最先进模型的排名发生了变化。最后,我们为这一领域的未来工作提供了指导,并呼吁社会各界参与讨论如何改进合成规划的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1