Muhammad A. Imran;Marco Zennaro;Olaoluwa R. Popoola;Luca Chiaraviglio;Hongwei Zhang;Pietro Manzoni;Jaap van de Beek;Robert Stewart;Mitchell Arij Cox;Luciano Leonel Mendes;Ermanno Pietrosemoli
{"title":"Exploring the Boundaries of Connected Systems: Communications for Hard-to-Reach Areas and Extreme Conditions","authors":"Muhammad A. Imran;Marco Zennaro;Olaoluwa R. Popoola;Luca Chiaraviglio;Hongwei Zhang;Pietro Manzoni;Jaap van de Beek;Robert Stewart;Mitchell Arij Cox;Luciano Leonel Mendes;Ermanno Pietrosemoli","doi":"10.1109/JPROC.2024.3402265","DOIUrl":null,"url":null,"abstract":"Cellular communication standards have been established to ensure connectivity across most urban environments, complemented by deployment hardware and facilities tailored for city life. At the same time, numerous initiatives seek to broaden connectivity to rural and developing areas. However, with nearly half the global population still offline, there is an urgent need to drive research toward enhancing connectivity in areas and conditions that deviate from the norm. This article delves into innovative communication solutions not only for hard-to-reach and extreme environments but also introduces “hard-to-serve” areas as a crucial, yet underexplored, category within the broader spectrum of connectivity challenges. We explore the latest advancements in communication systems designed for environments subject to extreme temperatures, harsh weather, excessive dust, or even disasters such as fires. Our exploration spans the entire communication stack, covering communications on isolated islands, sparsely populated regions, mountainous terrains, and even underwater and underground settings. We highlight system architectures, hardware, materials, algorithms, and other pivotal technologies that promise to connect these challenging areas. Through case studies, we explore the application of 5G for innovative research, long range (LoRa) for audio messages and emails, LoRa wireless connections, free-space optics, communications in underwater and underground scenarios, delay-tolerant networks, satellite links, and the strategic use of shared spectrum and TV white space (TVWS) to improve mobile connectivity in secluded and remote regions. These studies also touch on prevalent challenges such as power outages, regulatory gaps, technological availability, and human resource constraints, where we introduce the concept of peri-urban hard-to-serve areas where populations might struggle with affordability or lack the skills for traditional connectivity solutions. This article provides an exhaustive summary of our research, showcasing how 6G and future networks will play a crucial role in delivering connectivity to areas that are hard-to-reach, hard-to-serve, or subject to extreme conditions (ECs).","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 7","pages":"912-945"},"PeriodicalIF":23.2000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10547564/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular communication standards have been established to ensure connectivity across most urban environments, complemented by deployment hardware and facilities tailored for city life. At the same time, numerous initiatives seek to broaden connectivity to rural and developing areas. However, with nearly half the global population still offline, there is an urgent need to drive research toward enhancing connectivity in areas and conditions that deviate from the norm. This article delves into innovative communication solutions not only for hard-to-reach and extreme environments but also introduces “hard-to-serve” areas as a crucial, yet underexplored, category within the broader spectrum of connectivity challenges. We explore the latest advancements in communication systems designed for environments subject to extreme temperatures, harsh weather, excessive dust, or even disasters such as fires. Our exploration spans the entire communication stack, covering communications on isolated islands, sparsely populated regions, mountainous terrains, and even underwater and underground settings. We highlight system architectures, hardware, materials, algorithms, and other pivotal technologies that promise to connect these challenging areas. Through case studies, we explore the application of 5G for innovative research, long range (LoRa) for audio messages and emails, LoRa wireless connections, free-space optics, communications in underwater and underground scenarios, delay-tolerant networks, satellite links, and the strategic use of shared spectrum and TV white space (TVWS) to improve mobile connectivity in secluded and remote regions. These studies also touch on prevalent challenges such as power outages, regulatory gaps, technological availability, and human resource constraints, where we introduce the concept of peri-urban hard-to-serve areas where populations might struggle with affordability or lack the skills for traditional connectivity solutions. This article provides an exhaustive summary of our research, showcasing how 6G and future networks will play a crucial role in delivering connectivity to areas that are hard-to-reach, hard-to-serve, or subject to extreme conditions (ECs).
期刊介绍:
Proceedings of the IEEE is the leading journal to provide in-depth review, survey, and tutorial coverage of the technical developments in electronics, electrical and computer engineering, and computer science. Consistently ranked as one of the top journals by Impact Factor, Article Influence Score and more, the journal serves as a trusted resource for engineers around the world.