A Comparative Analysis of Wealth Index Predictions in Africa between three Multi-Source Inference Models

Márton Karsai, János Kertész, Lisette Espín-Noboa
{"title":"A Comparative Analysis of Wealth Index Predictions in Africa between three Multi-Source Inference Models","authors":"Márton Karsai, János Kertész, Lisette Espín-Noboa","doi":"arxiv-2408.01631","DOIUrl":null,"url":null,"abstract":"Poverty map inference is a critical area of research, with growing interest\nin both traditional and modern techniques, ranging from regression models to\nconvolutional neural networks applied to tabular data, images, and networks.\nDespite extensive focus on the validation of training phases, the scrutiny of\nfinal predictions remains limited. Here, we compare the Relative Wealth Index\n(RWI) inferred by Chi et al. (2021) with the International Wealth Index (IWI)\ninferred by Lee and Braithwaite (2022) and Esp\\'in-Noboa et al. (2023) across\nsix Sub-Saharan African countries. Our analysis focuses on identifying trends\nand discrepancies in wealth predictions over time. Our results show that the\npredictions by Chi et al. and Esp\\'in-Noboa et al. align with general GDP\ntrends, with differences expected due to the distinct time-frames of the\ntraining sets. However, predictions by Lee and Braithwaite diverge\nsignificantly, indicating potential issues with the validity of the model.\nThese discrepancies highlight the need for policymakers and stakeholders in\nAfrica to rigorously audit models that predict wealth, especially those used\nfor decision-making on the ground. These and other techniques require\ncontinuous verification and refinement to enhance their reliability and ensure\nthat poverty alleviation strategies are well-founded.","PeriodicalId":501043,"journal":{"name":"arXiv - PHYS - Physics and Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Poverty map inference is a critical area of research, with growing interest in both traditional and modern techniques, ranging from regression models to convolutional neural networks applied to tabular data, images, and networks. Despite extensive focus on the validation of training phases, the scrutiny of final predictions remains limited. Here, we compare the Relative Wealth Index (RWI) inferred by Chi et al. (2021) with the International Wealth Index (IWI) inferred by Lee and Braithwaite (2022) and Esp\'in-Noboa et al. (2023) across six Sub-Saharan African countries. Our analysis focuses on identifying trends and discrepancies in wealth predictions over time. Our results show that the predictions by Chi et al. and Esp\'in-Noboa et al. align with general GDP trends, with differences expected due to the distinct time-frames of the training sets. However, predictions by Lee and Braithwaite diverge significantly, indicating potential issues with the validity of the model. These discrepancies highlight the need for policymakers and stakeholders in Africa to rigorously audit models that predict wealth, especially those used for decision-making on the ground. These and other techniques require continuous verification and refinement to enhance their reliability and ensure that poverty alleviation strategies are well-founded.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三种多源推理模型对非洲财富指数预测的比较分析
贫困图推断是一个重要的研究领域,人们对传统和现代技术的兴趣与日俱增,从回归模型到应用于表格数据、图像和网络的卷积神经网络,不一而足。在此,我们将 Chi 等人(2021 年)推断的相对财富指数(RWI)与 Lee 和 Braithwaite(2022 年)以及 Esp\'in-Noboa 等人(2023 年)在撒哈拉以南非洲六个国家推断的国际财富指数(IWI)进行比较。我们的分析重点是识别财富预测随时间变化的趋势和差异。我们的结果显示,Chi 等人和 Esp\'in-Noboa 等人的预测与 GDP 的总体趋势一致,由于训练集的时间框架不同,预计会存在差异。这些差异突出表明,非洲的政策制定者和利益相关者需要严格审核预测财富的模型,尤其是用于实地决策的模型。这些技术和其他技术需要不断验证和完善,以提高其可靠性,确保扶贫战略有充分的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuity equation and fundamental diagram of pedestrians Anomalous behavior of Replicator dynamics for the Prisoner's Dilemma on diluted lattices Quantifying the role of supernatural entities and the effect of missing data in Irish sagas Crossing the disciplines -- a starter toolkit for researchers who wish to explore early Irish literature Female representation across mythologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1