Cascading failures with group support in interdependent hypergraphs

Lei Chen, Chunxiao Jia, Run-Ran Liu, Fanyuan Meng
{"title":"Cascading failures with group support in interdependent hypergraphs","authors":"Lei Chen, Chunxiao Jia, Run-Ran Liu, Fanyuan Meng","doi":"arxiv-2408.01172","DOIUrl":null,"url":null,"abstract":"The functionality of an entity frequently necessitates the support of a group\nsituated in another layer of the system. To unravel the profound impact of such\ngroup support on a system's resilience against cascading failures, we devise a\nframework comprising a double-layer interdependent hypergraph system, wherein\nnodes are capable of receiving support via hyperedges. Our central hypothesis\nposits that the failure may transcend to another layer when all support groups\nof each dependent node fail, thereby initiating a potentially iterative cascade\nacross layers. Through rigorous analytical methods, we derive the critical\nthreshold for the initial node survival probability that marks the second-order\nphase transition point. A salient discovery is that as the prevalence of\ndependent nodes escalates, the system dynamics shift from a second-order to a\nfirst-order phase transition. Notably, irrespective of the collapse pattern,\nsystems characterized by scale-free hyperdegree distributions within both\nhypergraph layers consistently demonstrate superior robustness compared to\nthose adhering to Poisson hyperdegree distributions. In summary, our research\nunderscores the paramount significance of group support mechanisms and\nintricate network topologies in determining the resilience of interconnected\nsystems against the propagation of cascading failures. By exploring the\ninterplay between these factors, we have gained insights into how systems can\nbe designed or optimized to mitigate the risk of widespread disruptions,\nensuring their continued functionality and stability in the face of adverse\nevents.","PeriodicalId":501043,"journal":{"name":"arXiv - PHYS - Physics and Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The functionality of an entity frequently necessitates the support of a group situated in another layer of the system. To unravel the profound impact of such group support on a system's resilience against cascading failures, we devise a framework comprising a double-layer interdependent hypergraph system, wherein nodes are capable of receiving support via hyperedges. Our central hypothesis posits that the failure may transcend to another layer when all support groups of each dependent node fail, thereby initiating a potentially iterative cascade across layers. Through rigorous analytical methods, we derive the critical threshold for the initial node survival probability that marks the second-order phase transition point. A salient discovery is that as the prevalence of dependent nodes escalates, the system dynamics shift from a second-order to a first-order phase transition. Notably, irrespective of the collapse pattern, systems characterized by scale-free hyperdegree distributions within both hypergraph layers consistently demonstrate superior robustness compared to those adhering to Poisson hyperdegree distributions. In summary, our research underscores the paramount significance of group support mechanisms and intricate network topologies in determining the resilience of interconnected systems against the propagation of cascading failures. By exploring the interplay between these factors, we have gained insights into how systems can be designed or optimized to mitigate the risk of widespread disruptions, ensuring their continued functionality and stability in the face of adverse events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相互依存超图中具有群体支持的级联故障
一个实体的功能经常需要位于系统另一层的群体的支持。为了揭示这种群组支持对系统抵御级联故障的深远影响,我们设计了一个由双层相互依赖超图系统组成的框架,其中的节点能够通过超通道接受支持。我们的核心假设是,当每个依赖节点的所有支持组都失效时,故障可能会蔓延到另一层,从而引发潜在的跨层迭代级联。通过严格的分析方法,我们得出了初始节点存活概率的临界阈值,它标志着二阶阶段的转换点。一个突出的发现是,随着依赖节点的增加,系统动力学会从二阶相变转变为一阶相变。值得注意的是,与泊松超度分布的系统相比,无论坍缩模式如何,两个超图层内无标度超度分布的系统始终表现出更高的鲁棒性。总之,我们的研究证明了群体支持机制和错综复杂的网络拓扑结构在决定互联系统抵御级联故障传播方面的重要作用。通过探索这些因素之间的相互作用,我们深入了解了如何设计或优化系统,以降低大范围破坏的风险,确保系统在面对不利事件时的持续功能性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuity equation and fundamental diagram of pedestrians Anomalous behavior of Replicator dynamics for the Prisoner's Dilemma on diluted lattices Quantifying the role of supernatural entities and the effect of missing data in Irish sagas Crossing the disciplines -- a starter toolkit for researchers who wish to explore early Irish literature Female representation across mythologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1