Deglaciation and abrupt events in a coupled comprehensive atmosphere–ocean–ice sheet–solid earth model

IF 3.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Climate of The Past Pub Date : 2024-08-07 DOI:10.5194/cp-2024-55
Uwe Mikolajewicz, Marie-Luise Kapsch, Clemens Schannwell, Katharina D. Six, Florian A. Ziemen, Meike Bagge, Jean-Philippe Baudouin, Olga Erokhina, Veronika Gayler, Volker Klemann, Virna L. Meccia, Anne Mouchet, Thomas Riddick
{"title":"Deglaciation and abrupt events in a coupled comprehensive atmosphere–ocean–ice sheet–solid earth model","authors":"Uwe Mikolajewicz, Marie-Luise Kapsch, Clemens Schannwell, Katharina D. Six, Florian A. Ziemen, Meike Bagge, Jean-Philippe Baudouin, Olga Erokhina, Veronika Gayler, Volker Klemann, Virna L. Meccia, Anne Mouchet, Thomas Riddick","doi":"10.5194/cp-2024-55","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> During the last 20,000 years the climate of the earth has changed from a state much colder than today with large ice sheets in North America and Northwest Eurasia to its present state. The fully-interactive simulation of this transition represents a hitherto unsolved challenge for state-of-the-art climate models. We use a novel coupled comprehensive atmosphere–ocean–vegetation– ice sheet–solid earth model to simulate the transient climate evolution from the last glacial maximum to preindustrial times. The model considers dynamical changes of the glacier mask, land–sea mask and river routing. An ensemble of transient model simulations successfully captures the main features of the last deglaciation, as depicted by proxy estimates. In addition, our model simulates a series of abrupt climate changes, which can be attributed to different drivers. Abrupt cooling events during the glacial and the first half of the deglaciation are caused by Heinrich-event like ice-sheet surges, which are part of the model generated internal variability. We show that the timing of these surges depends on the initial state and the model parameters. Abrupt events during the second half of the deglaciation are caused by a long-term shift in the sign of the Arctic freshwater budget, changes in river routing and/or the opening of ocean passages.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"50 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/cp-2024-55","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. During the last 20,000 years the climate of the earth has changed from a state much colder than today with large ice sheets in North America and Northwest Eurasia to its present state. The fully-interactive simulation of this transition represents a hitherto unsolved challenge for state-of-the-art climate models. We use a novel coupled comprehensive atmosphere–ocean–vegetation– ice sheet–solid earth model to simulate the transient climate evolution from the last glacial maximum to preindustrial times. The model considers dynamical changes of the glacier mask, land–sea mask and river routing. An ensemble of transient model simulations successfully captures the main features of the last deglaciation, as depicted by proxy estimates. In addition, our model simulates a series of abrupt climate changes, which can be attributed to different drivers. Abrupt cooling events during the glacial and the first half of the deglaciation are caused by Heinrich-event like ice-sheet surges, which are part of the model generated internal variability. We show that the timing of these surges depends on the initial state and the model parameters. Abrupt events during the second half of the deglaciation are caused by a long-term shift in the sign of the Arctic freshwater budget, changes in river routing and/or the opening of ocean passages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大气-海洋-冰盖-固体地球耦合综合模型中的脱冰期和突变事件
摘要在过去的两万年间,地球的气候从北美和欧亚西北部的大冰原状态(比现在冷得多)转变为现在的状态。对这一转变的完全交互式模拟是迄今为止最先进的气候模型所面临的一项尚未解决的挑战。我们使用了一个新颖的大气-海洋-植被-冰盖-固体地球综合耦合模型,来模拟从上一个冰川最大值到工业化前时期的瞬态气候演变。该模型考虑了冰川掩蔽、海陆掩蔽和河流路径的动态变化。瞬态模型模拟集合成功地捕捉到了代用估算值所描述的末次冰川期的主要特征。此外,我们的模型模拟了一系列气候突变,这些突变可归因于不同的驱动因素。冰川期和退化前半期的突然降温事件是由类似海因里希事件的冰盖激增引起的,这也是模型产生的内部变率的一部分。我们的研究表明,冰盖激增的时间取决于初始状态和模型参数。降冰期后半段的突发性事件是由北极淡水预算符号的长期变化、河流路径的改变和/或海洋通道的开放引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Climate of The Past
Climate of The Past 地学-气象与大气科学
CiteScore
7.40
自引率
14.00%
发文量
120
审稿时长
4-8 weeks
期刊介绍: Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope. The main subject areas are the following: reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives; development and validation of new proxies, improvements of the precision and accuracy of proxy data; theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales; simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.
期刊最新文献
The Southern Ocean marine ice record of the early historical, circum-Antarctic voyages of Cook and Bellingshausen Climate influences on sea salt variability at Mount Brown South, East Antarctica Environmental controls of rapid terrestrial organic matter mobilization to the western Laptev Sea since the last deglaciation Pattern scaling of simulated vegetation change in North Africa during glacial cycles Simulated ocean oxygenation during the interglacials MIS 5e and MIS 9e
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1