High-dimensional maximum-entropy phase space tomography using normalizing flows

Austin Hoover, Jonathan C. Wong
{"title":"High-dimensional maximum-entropy phase space tomography using normalizing flows","authors":"Austin Hoover, Jonathan C. Wong","doi":"10.1103/physrevresearch.6.033163","DOIUrl":null,"url":null,"abstract":"Particle accelerators generate charged-particle beams with tailored distributions in six-dimensional position-momentum space (phase space). Knowledge of the phase space distribution enables model-based beam optimization and control. In the absence of direct measurements, the distribution must be tomographically reconstructed from its projections. In this paper, we highlight that such problems can be severely underdetermined and that entropy maximization is the most conservative solution strategy. We leverage <i>normalizing flows</i>—invertible generative models—to extend maximum-entropy tomography to six-dimensional phase space and perform numerical experiments to validate the model's performance. Our numerical experiments demonstrate consistency with exact two-dimensional maximum-entropy solutions and the ability to fit complicated six-dimensional distributions to large measurement sets in reasonable time.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Particle accelerators generate charged-particle beams with tailored distributions in six-dimensional position-momentum space (phase space). Knowledge of the phase space distribution enables model-based beam optimization and control. In the absence of direct measurements, the distribution must be tomographically reconstructed from its projections. In this paper, we highlight that such problems can be severely underdetermined and that entropy maximization is the most conservative solution strategy. We leverage normalizing flows—invertible generative models—to extend maximum-entropy tomography to six-dimensional phase space and perform numerical experiments to validate the model's performance. Our numerical experiments demonstrate consistency with exact two-dimensional maximum-entropy solutions and the ability to fit complicated six-dimensional distributions to large measurement sets in reasonable time.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用归一化流动的高维最大熵相空间断层成像技术
粒子加速器产生的带电粒子束在六维位置-动量空间(相空间)中具有量身定制的分布。了解了相空间的分布情况,就能对粒子束进行基于模型的优化和控制。在缺乏直接测量的情况下,必须根据其投影对分布进行层析重建。在本文中,我们强调此类问题可能会严重欠定,而熵最大化是最保守的求解策略。我们利用归一化流-可逆生成模型,将最大熵层析扩展到六维相空间,并通过数值实验验证了该模型的性能。我们的数值实验证明了与精确的二维最大熵解的一致性,以及在合理时间内将复杂的六维分布拟合到大型测量集的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
期刊最新文献
Explosive percolation in finite dimensions Iterative site percolation on triangular lattice Hydrodynamic hovering of swimming bacteria above surfaces Comparison of estimation limits for quantum two-parameter estimation Measurements of extended magnetic fields in laser-solid interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1