Three-way data clustering based on the mean-mixture of matrix-variate normal distributions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-25 DOI:10.1016/j.csda.2024.108016
Mehrdad Naderi , Mostafa Tamandi , Elham Mirfarah , Wan-Lun Wang , Tsung-I Lin
{"title":"Three-way data clustering based on the mean-mixture of matrix-variate normal distributions","authors":"Mehrdad Naderi ,&nbsp;Mostafa Tamandi ,&nbsp;Elham Mirfarah ,&nbsp;Wan-Lun Wang ,&nbsp;Tsung-I Lin","doi":"10.1016/j.csda.2024.108016","DOIUrl":null,"url":null,"abstract":"<div><p>With the steady growth of computer technologies, the application of statistical techniques to analyze extensive datasets has garnered substantial attention. The analysis of three-way (matrix-variate) data has emerged as a burgeoning field that has inspired statisticians in recent years to develop novel analytical methods. This paper introduces a unified finite mixture model that relies on the mean-mixture of matrix-variate normal distributions. The strength of our proposed model lies in its capability to capture and cluster a wide range of three-way data that exhibit heterogeneous, asymmetric and leptokurtic features. A computationally feasible ECME algorithm is developed to compute the maximum likelihood (ML) estimates. Numerous simulation studies are conducted to investigate the asymptotic properties of the ML estimators, validate the effectiveness of the Bayesian information criterion in selecting the appropriate model, and assess the classification ability in presence of contaminated noise. The utility of the proposed methodology is demonstrated by analyzing a real-life data example.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the steady growth of computer technologies, the application of statistical techniques to analyze extensive datasets has garnered substantial attention. The analysis of three-way (matrix-variate) data has emerged as a burgeoning field that has inspired statisticians in recent years to develop novel analytical methods. This paper introduces a unified finite mixture model that relies on the mean-mixture of matrix-variate normal distributions. The strength of our proposed model lies in its capability to capture and cluster a wide range of three-way data that exhibit heterogeneous, asymmetric and leptokurtic features. A computationally feasible ECME algorithm is developed to compute the maximum likelihood (ML) estimates. Numerous simulation studies are conducted to investigate the asymptotic properties of the ML estimators, validate the effectiveness of the Bayesian information criterion in selecting the appropriate model, and assess the classification ability in presence of contaminated noise. The utility of the proposed methodology is demonstrated by analyzing a real-life data example.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于矩阵变量正态分布均值混合的三向数据聚类
随着计算机技术的稳步发展,应用统计技术分析广泛的数据集已引起人们的极大关注。近年来,三向(矩阵变量)数据分析已成为一个新兴领域,激励着统计学家开发新的分析方法。本文介绍了一种统一的有限混合模型,它依赖于矩阵变量正态分布的均值混合。我们提出的模型的优势在于它能够捕捉和聚类各种表现出异质性、非对称性和leptokurtic特征的三向数据。为了计算最大似然估计值,我们开发了一种计算上可行的 ECME 算法。研究人员进行了大量模拟研究,以调查最大似然估计值的渐近特性,验证贝叶斯信息准则在选择适当模型方面的有效性,并评估在存在污染噪声时的分类能力。通过分析现实生活中的一个数据实例,证明了所提方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1