Meenakshi Chauhan, K. Jena, Raghuvir Tomar, Abdul Naim Khan
{"title":"Rf/analog and linearity performance of field-plate engineered AlN/ $$\\beta$$ -Ga2O3 MOSHEMT for high power and microwave applications","authors":"Meenakshi Chauhan, K. Jena, Raghuvir Tomar, Abdul Naim Khan","doi":"10.1007/s00542-024-05730-y","DOIUrl":null,"url":null,"abstract":"<p>This work introduces a novel AlN/<span>\\(\\beta\\)</span>-Ga<sub>2</sub>O<sub>3</sub> MOSHEMT design incorporating a field plate for enhanced power switching applications. The study investigates the impact of varying field plate length (L<sub>FP</sub>) on key device parameters through extensive analysis paving the way for optimized device design. The AlN/<span>\\(\\beta\\)</span>-Ga<sub>2</sub>O<sub>3</sub> combination, facilitated by the high bandgap of <span>\\(\\beta\\)</span>-Ga<sub>2</sub>O<sub>3</sub> and the formation of a significant two-dimensional electron gas, n<sub>s</sub> = 10<sup>13</sup> cm<sup>-2</sup> at the AlN interface, leads to exceptional DC and RF performance. Key findings reveal a peak breakdown voltage of 175 V for a 400 nm field plate, highlighting its suitability for high-voltage applications. The output power exhibits a clear L<sub>FP</sub> dependence, ranging from 10.5 kW at 100 nm to 18.1 kW at 400 nm, showcasing the device’s potential for high-power operation. Additionally, the on-state drain current (I<sub>ON</sub>) remains stable across varying L<sub>FP</sub>. Technology Computer Aided Design (TCAD) simulations demonstrate effective electric field management with the 400 nm field plate reaching a peak of 8.58 MV/cm and decreasing significantly with shorter L<sub>FP</sub>. Furthermore, detailed analysis explores the device’s linearity performance. This includes transconductance, its higher-order derivatives, and crucial linearity figures-of-merit (FOMs) like VIP2, VIP3, IIP3, and IMD3. Distortion parameters (HD2 and HD3) also reveal an improved dynamic range and reduced intermodulation interference. These promising results establish the proposed AlN/<span>\\(\\beta\\)</span>-Ga<sub>2</sub>O<sub>3</sub> MOSHEMT with a field plate as a compelling candidate for power switching applications demanding high breakdown voltage, significant output power, and exceptional linearity.</p>","PeriodicalId":18544,"journal":{"name":"Microsystem Technologies","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00542-024-05730-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a novel AlN/\(\beta\)-Ga2O3 MOSHEMT design incorporating a field plate for enhanced power switching applications. The study investigates the impact of varying field plate length (LFP) on key device parameters through extensive analysis paving the way for optimized device design. The AlN/\(\beta\)-Ga2O3 combination, facilitated by the high bandgap of \(\beta\)-Ga2O3 and the formation of a significant two-dimensional electron gas, ns = 1013 cm-2 at the AlN interface, leads to exceptional DC and RF performance. Key findings reveal a peak breakdown voltage of 175 V for a 400 nm field plate, highlighting its suitability for high-voltage applications. The output power exhibits a clear LFP dependence, ranging from 10.5 kW at 100 nm to 18.1 kW at 400 nm, showcasing the device’s potential for high-power operation. Additionally, the on-state drain current (ION) remains stable across varying LFP. Technology Computer Aided Design (TCAD) simulations demonstrate effective electric field management with the 400 nm field plate reaching a peak of 8.58 MV/cm and decreasing significantly with shorter LFP. Furthermore, detailed analysis explores the device’s linearity performance. This includes transconductance, its higher-order derivatives, and crucial linearity figures-of-merit (FOMs) like VIP2, VIP3, IIP3, and IMD3. Distortion parameters (HD2 and HD3) also reveal an improved dynamic range and reduced intermodulation interference. These promising results establish the proposed AlN/\(\beta\)-Ga2O3 MOSHEMT with a field plate as a compelling candidate for power switching applications demanding high breakdown voltage, significant output power, and exceptional linearity.