Early-stage biosynthesis of phenalinolactone diterpenoids involves sequential prenylation, epoxidation, and cyclization†

IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY RSC Chemical Biology Pub Date : 2024-08-05 DOI:10.1039/D4CB00138A
Tyler A. Alsup, Zining Li, Caitlin A. McCadden, Annika Jagels, Diana P. Łomowska-Keehner, Erin M. Marshall, Liao-Bin Dong, Sandra Loesgen and Jeffrey D. Rudolf
{"title":"Early-stage biosynthesis of phenalinolactone diterpenoids involves sequential prenylation, epoxidation, and cyclization†","authors":"Tyler A. Alsup, Zining Li, Caitlin A. McCadden, Annika Jagels, Diana P. Łomowska-Keehner, Erin M. Marshall, Liao-Bin Dong, Sandra Loesgen and Jeffrey D. Rudolf","doi":"10.1039/D4CB00138A","DOIUrl":null,"url":null,"abstract":"<p >The chemical logic associated with assembly of many bacterial terpenoids remains poorly understood. We focused our efforts on the early-stage biosynthesis of the phenalinolactone diterpenoids, demonstrating that the <em>anti/anti/syn</em>-perhydrophenanthrene core is constructed by sequential prenylation, epoxidation, and cyclization. The functions and timing of PlaT1–PlaT3 were assigned by comprehensive heterologous reconstitution. We illustrated that the UbiA prenyltransferase PlaT3 acts on geranylgeranyl diphosphate (GGPP) in the first step of phenalinolactone biosynthesis, prior to epoxidation by the flavin-dependent monooxygenase PlaT1 and cyclization by the type II terpene cyclase PlaT2. Finally, we isolated eight new-to-nature terpenoids, expanding the scope of the bacterial terpenome. The biosynthetic strategy employed in the assembly of the phenalinolactone core, with cyclization occurring after prenylation, is rare in bacteria and resembles fungal meroterpenoid biosynthesis. The findings presented here set the stage for future discovery, engineering, and enzymology efforts in bacterial meroterpenoids.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 10","pages":" 1010-1016"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cb/d4cb00138a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cb/d4cb00138a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The chemical logic associated with assembly of many bacterial terpenoids remains poorly understood. We focused our efforts on the early-stage biosynthesis of the phenalinolactone diterpenoids, demonstrating that the anti/anti/syn-perhydrophenanthrene core is constructed by sequential prenylation, epoxidation, and cyclization. The functions and timing of PlaT1–PlaT3 were assigned by comprehensive heterologous reconstitution. We illustrated that the UbiA prenyltransferase PlaT3 acts on geranylgeranyl diphosphate (GGPP) in the first step of phenalinolactone biosynthesis, prior to epoxidation by the flavin-dependent monooxygenase PlaT1 and cyclization by the type II terpene cyclase PlaT2. Finally, we isolated eight new-to-nature terpenoids, expanding the scope of the bacterial terpenome. The biosynthetic strategy employed in the assembly of the phenalinolactone core, with cyclization occurring after prenylation, is rare in bacteria and resembles fungal meroterpenoid biosynthesis. The findings presented here set the stage for future discovery, engineering, and enzymology efforts in bacterial meroterpenoids.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酚醛内酯二萜的早期生物合成涉及连续的前酰化、环氧化和环化过程
人们对许多细菌萜类化合物组装的化学逻辑仍然知之甚少。我们将研究重点放在酚内酯二萜的早期生物合成上,证明了反/反/合成过氢菲核心是通过连续的预炔化、环氧化和环化过程构建的。通过全面的异源重组,我们确定了 PlaT1-PlaT3 的功能和时间。我们证明了 UbiA 预炔基转移酶 PlaT3 在酚内酯生物合成的第一步作用于香叶基二磷酸甘油酯(GGPP),然后由黄素依赖性单加氧酶 PlaT1 进行环氧化,并由 II 型萜烯环化酶 PlaT2 进行环化。最后,我们分离出了八种新的天然萜类化合物,扩大了细菌萜类化合物组的范围。在组装酚醛内酯核心时采用的生物合成策略,即在前炔化后进行环化,在细菌中是罕见的,与真菌的经萜生物合成相似。本文介绍的研究结果为今后发现、工程化和酶学研究细菌经萜类化合物奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
期刊最新文献
Cultivating the future leaders of chemical biology. Rational engineering of an antimalarial peptide with enhanced proteolytic stability and preserved parasite invasion inhibitory activity. A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor. A platform of ADAPTive scaffolds: development of CDR-H3 β-hairpin mimics into covalent inhibitors of the PD1/PDL1 immune checkpoint. Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1