Molecular Crosstalk of Jasmonate with Major Phytohormones and Plant Growth Regulators During Diverse Stress Responses

IF 3.9 3区 生物学 Q1 PLANT SCIENCES Journal of Plant Growth Regulation Pub Date : 2024-08-05 DOI:10.1007/s00344-024-11412-w
Santanu Samanta, Aryadeep Roychoudhury
{"title":"Molecular Crosstalk of Jasmonate with Major Phytohormones and Plant Growth Regulators During Diverse Stress Responses","authors":"Santanu Samanta, Aryadeep Roychoudhury","doi":"10.1007/s00344-024-11412-w","DOIUrl":null,"url":null,"abstract":"<p>Phytohormones are natural signaling molecules, developed and deployed by plants to tackle diverse biotic and abiotic stresses, thus holding great significance. Over the past few decades, growing evidence has suggested that jasmonates, a comparatively newer class of stress-responsive phytohormone, are involved in a multifaceted role of physio-biochemical processes consolidated so far in plants. Jasmonates are known to interact with five major phytohormones, often called “the big five” such as auxin, gibberellins, cytokinins, abscisic acid and ethylene, as well as plant growth regulators (PGRs) including brassinosteroids, strigolactones, salicylic acid, nitric oxide, melatonin, polyamines and hydrogen sulfide for resource allocation to maintain a dynamic balance between basal growth and plant defense response under suboptimal conditions. The detailed knowledge of coordinated relationships among multiple phytohormones along with PGRs and their interconnected networks by means of synergistic and antagonistic actions is crucial for understanding plant adaptations during environmentally challenged situations. In the present review, we provide a broad overview of jasmonate signaling pathways, starting from biosynthesis, metabolism and signal transduction pathways, together with the intricate crosstalk mechanism among jasmonates, major phytohormones and PGRs, based on recent advancements in research. The molecular basis of crosstalk and the key components of signaling pathways are also discussed in this review, which can be utilized for better stress management programs through the manipulation of phytohormone signaling under hostile environment.</p>","PeriodicalId":16842,"journal":{"name":"Journal of Plant Growth Regulation","volume":"35 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00344-024-11412-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phytohormones are natural signaling molecules, developed and deployed by plants to tackle diverse biotic and abiotic stresses, thus holding great significance. Over the past few decades, growing evidence has suggested that jasmonates, a comparatively newer class of stress-responsive phytohormone, are involved in a multifaceted role of physio-biochemical processes consolidated so far in plants. Jasmonates are known to interact with five major phytohormones, often called “the big five” such as auxin, gibberellins, cytokinins, abscisic acid and ethylene, as well as plant growth regulators (PGRs) including brassinosteroids, strigolactones, salicylic acid, nitric oxide, melatonin, polyamines and hydrogen sulfide for resource allocation to maintain a dynamic balance between basal growth and plant defense response under suboptimal conditions. The detailed knowledge of coordinated relationships among multiple phytohormones along with PGRs and their interconnected networks by means of synergistic and antagonistic actions is crucial for understanding plant adaptations during environmentally challenged situations. In the present review, we provide a broad overview of jasmonate signaling pathways, starting from biosynthesis, metabolism and signal transduction pathways, together with the intricate crosstalk mechanism among jasmonates, major phytohormones and PGRs, based on recent advancements in research. The molecular basis of crosstalk and the key components of signaling pathways are also discussed in this review, which can be utilized for better stress management programs through the manipulation of phytohormone signaling under hostile environment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
茉莉酸盐与主要植物激素和植物生长调节剂在多种胁迫响应中的分子串联作用
植物激素是一种天然信号分子,由植物开发和利用,以应对各种生物和非生物胁迫,因此具有重要意义。在过去的几十年中,越来越多的证据表明,茉莉酸盐作为一类较新的胁迫响应型植物激素,参与了植物迄今为止所巩固的生理生化过程的多方面作用。众所周知,茉莉酸盐与五种主要植物激素(通常称为 "五大激素")(如辅助素、赤霉素、细胞分裂素、脱落酸和乙烯)以及植物生长调节剂(PGRs)(包括黄铜类固醇、绞股蓝内酯、水杨酸、一氧化氮、褪黑激素、多胺和硫化氢)相互作用,进行资源分配,从而在次优条件下维持基础生长和植物防御反应之间的动态平衡。详细了解多种植物激素与植物生长素之间的协调关系及其通过协同和拮抗作用形成的相互联系网络,对于理解植物在环境挑战条件下的适应性至关重要。在本综述中,我们根据最新研究进展,从生物合成、代谢和信号转导途径等方面概述了茉莉酸盐信号通路,以及茉莉酸盐、主要植物激素和植物生长素之间错综复杂的串扰机制。本综述还讨论了串扰的分子基础和信号传导途径的关键成分,通过在恶劣环境下操纵植物激素信号传导,可用于更好的胁迫管理方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
6.20%
发文量
312
审稿时长
1.8 months
期刊介绍: The Journal of Plant Growth Regulation is an international publication featuring original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research on various aspects of plant growth and development using hormonal, physiological, environmental, genetic, biophysical, developmental and/or molecular approaches. The journal also publishes timely reviews on highly relevant areas and/or studies in plant growth and development, including interdisciplinary work with an emphasis on plant growth, plant hormones and plant pathology or abiotic stress. In addition, the journal features occasional thematic issues with special guest editors, as well as brief communications describing novel techniques and meeting reports. The journal is unlikely to accept manuscripts that are purely descriptive in nature or reports work with simple tissue culture without attempting to investigate the underlying mechanisms of plant growth regulation, those that focus exclusively on microbial communities, or deal with the (elicitation by plant hormones of) synthesis of secondary metabolites.
期刊最新文献
A Pyrazole Partially Induces Brassinosteroid-Related Gene Expression, Leading to Salt Stress Sensitivity Sodium Nitroprusside and Melatonin Improve Physiological Vitality and Drought Acclimation via Synergistically Enhancing Antioxidant Response in Dryland Maize The Role of the BELL1-2 Transcription Factor in the Development of Legume-rhizobial Symbiosis In Vitro Mutagenesis: A Non-invasive Technology for Effective Crop Improvement to Assure Food and Nutritional Security—Current Trends, Advancements and Future Perspectives MeJA Changes Root Growth, Iridoid, Xanthone, and Secoiridoid Production, as well as Gene Expression Levels in Root Cultures of Endangered Gentiana lutea and Gentiana boissieri
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1