Microstructure of Fracture Surfaces after Radial Compression of Annular Specimens Made of Cladding Austenitic Steel Exposed to Damaging Dose above 100 dpa
R. P. Karagergi, A. V. Kozlov, V. Yu. Yarkov, V. I. Pastukhov, S. V. Barsanova, T. A. Churyumova, N. M. Mitrofanova, M. V. Leont’eva-Smirnova
{"title":"Microstructure of Fracture Surfaces after Radial Compression of Annular Specimens Made of Cladding Austenitic Steel Exposed to Damaging Dose above 100 dpa","authors":"R. P. Karagergi, A. V. Kozlov, V. Yu. Yarkov, V. I. Pastukhov, S. V. Barsanova, T. A. Churyumova, N. M. Mitrofanova, M. V. Leont’eva-Smirnova","doi":"10.1134/s0031918x2460043x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Short-term mechanical testing of annular specimens made of a segment of the fuel element cladding irradiated in the BN-600 reactor up to damaging dose above 100 dpa has been performed. The specimens were compressed in the radial direction at different temperatures to plot experimental diagrams and analyze the stress-strain state. After testing, the fracture character and microstructure of the fracture surface were studied. It is shown that fracture of specimens at the microlevel occurs transgranularly, and the segments of fracture are observed along characteristic structural elements of cold deformed austenitic steel, along and transverse to packets of deformation twins. In general, fracture occurs with a strong deformation localization at different types of appeared defects.</p>","PeriodicalId":20180,"journal":{"name":"Physics of Metals and Metallography","volume":"14 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Metals and Metallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1134/s0031918x2460043x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Short-term mechanical testing of annular specimens made of a segment of the fuel element cladding irradiated in the BN-600 reactor up to damaging dose above 100 dpa has been performed. The specimens were compressed in the radial direction at different temperatures to plot experimental diagrams and analyze the stress-strain state. After testing, the fracture character and microstructure of the fracture surface were studied. It is shown that fracture of specimens at the microlevel occurs transgranularly, and the segments of fracture are observed along characteristic structural elements of cold deformed austenitic steel, along and transverse to packets of deformation twins. In general, fracture occurs with a strong deformation localization at different types of appeared defects.
期刊介绍:
The Physics of Metals and Metallography (Fizika metallov i metallovedenie) was founded in 1955 by the USSR Academy of Sciences. Its scientific profile involves the theory of metals and metal alloys, their electrical and magnetic properties, as well as their structure, phase transformations, and principal mechanical properties. The journal also publishes scientific reviews and papers written by experts involved in fundamental, application, and technological studies. The annual volume of publications amounts to some 250 papers submitted from 100 leading national scientific institutions.