Distributed Augmentation, Hypersweeps, and Branch Decomposition of Contour Trees for Scientific Exploration

Mingzhe Li, Hamish Carr, Oliver Rübel, Bei Wang, Gunther H. Weber
{"title":"Distributed Augmentation, Hypersweeps, and Branch Decomposition of Contour Trees for Scientific Exploration","authors":"Mingzhe Li, Hamish Carr, Oliver Rübel, Bei Wang, Gunther H. Weber","doi":"arxiv-2408.04836","DOIUrl":null,"url":null,"abstract":"Contour trees describe the topology of level sets in scalar fields and are\nwidely used in topological data analysis and visualization. A main challenge of\nutilizing contour trees for large-scale scientific data is their computation at\nscale using high-performance computing. To address this challenge, recent work\nhas introduced distributed hierarchical contour trees for distributed\ncomputation and storage of contour trees. However, effective use of these\ndistributed structures in analysis and visualization requires subsequent\ncomputation of geometric properties and branch decomposition to support contour\nextraction and exploration. In this work, we introduce distributed algorithms\nfor augmentation, hypersweeps, and branch decomposition that enable parallel\ncomputation of geometric properties, and support the use of distributed contour\ntrees as query structures for scientific exploration. We evaluate the parallel\nperformance of these algorithms and apply them to identify and extract\nimportant contours for scientific visualization.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contour trees describe the topology of level sets in scalar fields and are widely used in topological data analysis and visualization. A main challenge of utilizing contour trees for large-scale scientific data is their computation at scale using high-performance computing. To address this challenge, recent work has introduced distributed hierarchical contour trees for distributed computation and storage of contour trees. However, effective use of these distributed structures in analysis and visualization requires subsequent computation of geometric properties and branch decomposition to support contour extraction and exploration. In this work, we introduce distributed algorithms for augmentation, hypersweeps, and branch decomposition that enable parallel computation of geometric properties, and support the use of distributed contour trees as query structures for scientific exploration. We evaluate the parallel performance of these algorithms and apply them to identify and extract important contours for scientific visualization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于科学探索的等值线树的分布式扩增、超扫和分支分解
等值线树描述了标量场中水平集的拓扑结构,广泛应用于拓扑数据分析和可视化。将等值线树用于大规模科学数据的一个主要挑战是使用高性能计算进行等值线树的大规模计算。为了应对这一挑战,最近的研究引入了分布式分层等值线树,用于分布式计算和存储等值线树。然而,要在分析和可视化中有效利用这些分布式结构,需要对几何属性和分支分解进行后续计算,以支持轮廓提取和探索。在这项工作中,我们介绍了增强、超扫和分支分解的分布式算法,这些算法可实现几何属性的并行计算,并支持将分布式轮廓树用作科学探索的查询结构。我们评估了这些算法的并行性能,并将其应用于科学可视化中重要轮廓的识别和提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively parallel CMA-ES with increasing population Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations Energy Efficiency Support for Software Defined Networks: a Serverless Computing Approach CountChain: A Decentralized Oracle Network for Counting Systems Delay Analysis of EIP-4844
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1