Kinetics of thermal dry reforming of methane for syngas production and solid carbon capture†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Reaction Chemistry & Engineering Pub Date : 2024-08-06 DOI:10.1039/D4RE00312H
Manas Mokashi, Akash Bhimrao Shirsath, Sinan Demir, Ahmet Çelik, Patrick Lott, Steffen Tischer and Olaf Deutschmann
{"title":"Kinetics of thermal dry reforming of methane for syngas production and solid carbon capture†","authors":"Manas Mokashi, Akash Bhimrao Shirsath, Sinan Demir, Ahmet Çelik, Patrick Lott, Steffen Tischer and Olaf Deutschmann","doi":"10.1039/D4RE00312H","DOIUrl":null,"url":null,"abstract":"<p >Dry reforming of CH<small><sub>4</sub></small>, either by co-feeding CH<small><sub>4</sub></small> and CO<small><sub>2</sub></small> from waste streams or directly using biogas, has potential as a CO<small><sub>2</sub></small>-sink. This study investigates entirely thermal, catalyst-free dry reforming in a tubular flow reactor, aiming for syngas production with concurrent carbon capture. Kinetic modelling couples an elementary step-based gas-phase mechanism with a carbon deposition model. One-dimensional numerical simulations of the flow reactor are compared with experimental measurements. For this, operating conditions are widely varied, in particular temperature (1273 K to 1873 K), residence time (1 to 7 seconds), and CH<small><sub>4</sub></small> : CO<small><sub>2</sub></small> molar feed ratio (1 to 4). Two temperature regimes are identified, with varying dominance of the reverse water-gas shift and CH<small><sub>4</sub></small> pyrolysis reactions. Above 1673 K, CO<small><sub>2</sub></small> is fully consumed, independent of residence time and feed composition. Optimized operating parameters result in a H<small><sub>2</sub></small>/CO ratio of 2 in the effluent gas stream, <em>e.g.</em> as commonly desired for methanol and oxo-alcohol synthesis. Notably, under such optimized conditions, only a minor share of carbonaceous species remains in the gas-phase as hydrocarbons, while 33% of the CH<small><sub>4</sub></small>-borne carbon is transformed into CO and 48% of CH<small><sub>4</sub></small>-borne carbon is captured as solid carbon.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2902-2914"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d4re00312h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00312h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dry reforming of CH4, either by co-feeding CH4 and CO2 from waste streams or directly using biogas, has potential as a CO2-sink. This study investigates entirely thermal, catalyst-free dry reforming in a tubular flow reactor, aiming for syngas production with concurrent carbon capture. Kinetic modelling couples an elementary step-based gas-phase mechanism with a carbon deposition model. One-dimensional numerical simulations of the flow reactor are compared with experimental measurements. For this, operating conditions are widely varied, in particular temperature (1273 K to 1873 K), residence time (1 to 7 seconds), and CH4 : CO2 molar feed ratio (1 to 4). Two temperature regimes are identified, with varying dominance of the reverse water-gas shift and CH4 pyrolysis reactions. Above 1673 K, CO2 is fully consumed, independent of residence time and feed composition. Optimized operating parameters result in a H2/CO ratio of 2 in the effluent gas stream, e.g. as commonly desired for methanol and oxo-alcohol synthesis. Notably, under such optimized conditions, only a minor share of carbonaceous species remains in the gas-phase as hydrocarbons, while 33% of the CH4-borne carbon is transformed into CO and 48% of CH4-borne carbon is captured as solid carbon.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生产合成气和固体碳捕获的甲烷热干重转化动力学
通过从废物流中共同输入 CH4 和 CO2 或直接使用沼气进行 CH4 干转化,具有二氧化碳汇的潜力。本研究调查了管式流动反应器中的完全热式无催化剂干重整,旨在生产合成气,同时进行碳捕集。动力学建模将基于基本步骤的气相机制与碳沉积模型相结合。流动反应器的一维数值模拟与实验测量结果进行了比较。为此,操作条件变化很大,特别是温度(1273 K 至 1873 K)、停留时间(1 至 7 秒)和 CH4:CO2 摩尔进料比(1 至 4)。根据水-气反向转换反应和 CH4 热解反应的主导作用不同,确定了两种温度条件。在 1673 K 以上,二氧化碳被完全消耗,与停留时间和进料成分无关。优化操作参数后,流出气流中的 H2/CO 比率为 2,例如甲醇和氧化醇合成通常所需的比率。值得注意的是,在这种优化条件下,只有一小部分碳质物质以碳氢化合物的形式留在气相中,而 33% 的 CH4 碳转化为 CO,48% 的 CH4 碳以固态碳的形式被捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
期刊最新文献
Back cover Back cover Linear scaling relationships in homogeneous photoredox catalysis† Immobilization of cationic dye on photoluminescent hydroxyapatite particles through a citric acid bonding layer† ChemPren: a new and economical technology for conversion of waste plastics to light olefins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1