Two-way quantum time transfer: a method for daytime space-Earth links

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED Physical Review Applied Pub Date : 2024-08-06 DOI:10.1103/physrevapplied.22.024012
Randy Lafler, Mark L. Eickhoff, Scott C. Newey, Yamil Nieves Gonzalez, Kurt E. Stoltenberg, J. Frank Camacho, Mark A. Harris, Denis W. Oesch, Adrian J. Lewis, R. Nicholas Lanning
{"title":"Two-way quantum time transfer: a method for daytime space-Earth links","authors":"Randy Lafler, Mark L. Eickhoff, Scott C. Newey, Yamil Nieves Gonzalez, Kurt E. Stoltenberg, J. Frank Camacho, Mark A. Harris, Denis W. Oesch, Adrian J. Lewis, R. Nicholas Lanning","doi":"10.1103/physrevapplied.22.024012","DOIUrl":null,"url":null,"abstract":"High-precision remote clock synchronization is crucial for many classical and quantum network applications. Evaluating options for space-Earth links, we find that traditional solutions may not produce the desired synchronization for low Earth orbits and unnecessarily complicate quantum networking architectures. Demonstrating an alternative, we use commercial off-the-shelf quantum photon sources and detection equipment to synchronize two remote clocks across our free-space testbed utilizing a method called two-way quantum time transfer (QTT). We reach picosecond-scale timing precision under very lossy and noisy channel conditions representative of daytime space-Earth links and software-emulated satellite motion. This work demonstrates how QTT is potentially relevant for daytime space-Earth quantum networking and/or providing high-precision timing in GPS-denied environments.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"2 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024012","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

High-precision remote clock synchronization is crucial for many classical and quantum network applications. Evaluating options for space-Earth links, we find that traditional solutions may not produce the desired synchronization for low Earth orbits and unnecessarily complicate quantum networking architectures. Demonstrating an alternative, we use commercial off-the-shelf quantum photon sources and detection equipment to synchronize two remote clocks across our free-space testbed utilizing a method called two-way quantum time transfer (QTT). We reach picosecond-scale timing precision under very lossy and noisy channel conditions representative of daytime space-Earth links and software-emulated satellite motion. This work demonstrates how QTT is potentially relevant for daytime space-Earth quantum networking and/or providing high-precision timing in GPS-denied environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双向量子时空转移:昼间空间-地球链路方法
高精度远程时钟同步对许多经典和量子网络应用至关重要。在评估天-地链路的各种选择时,我们发现传统的解决方案可能无法为低地球轨道提供所需的同步,并不必要地使量子网络架构复杂化。为了展示一种替代方案,我们使用现成的商用量子光子源和检测设备,利用一种名为双向量子时间传输(QTT)的方法,在我们的自由空间测试平台上同步两个远程时钟。在代表日间空间-地球链路和软件模拟卫星运动的高损耗、高噪声信道条件下,我们达到了皮秒级的计时精度。这项工作展示了 QTT 如何与日间空间-地球量子网络和/或在全球定位系统失效环境中提供高精度定时具有潜在的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
期刊最新文献
Nonreciprocity of surface acoustic waves coupled to spin waves in a ferromagnetic bilayer with noncollinear layer magnetizations Experimental demonstration of deep-learning-enabled adaptive optics Power-stabilized 3-W blue laser locked to the 420-nm transition in rubidium Control of threshold voltages in Si/Si0.7Ge0.3 quantum devices via optical illumination Static quantum dot on a large potential hilltop for generating and analyzing hot electrons in the quantum Hall regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1