High-resolution closed-loop seismic inversion network in time-frequency phase mixed domain

Yingtian Liu, Yong Li, Junheng Peng, Huating Li, Mingwei Wang
{"title":"High-resolution closed-loop seismic inversion network in time-frequency phase mixed domain","authors":"Yingtian Liu, Yong Li, Junheng Peng, Huating Li, Mingwei Wang","doi":"arxiv-2408.04932","DOIUrl":null,"url":null,"abstract":"Thin layers and reservoirs may be concealed in areas of low seismic\nreflection amplitude, making them difficult to recognize. Deep learning (DL)\ntechniques provide new opportunities for accurate impedance prediction by\nestablishing a nonlinear mapping between seismic data and impedance. However,\nexisting methods primarily use time domain seismic data, which limits the\ncapture of frequency bands, thus leading to insufficient resolution of the\ninversion results. To address these problems, we introduce a new\ntime-frequency-phase (TFP) mixed-domain closed-loop seismic inversion network\n(TFP-CSIN) to improve the identification of thin layers and reservoirs. First,\nthe inversion network and closed-loop network are constructed by using\nbidirectional gated recurrent units (Bi-GRU) and convolutional neural network\n(CNN) architectures, enabling bidirectional mapping between seismic data and\nimpedance data. Next, to comprehensive learning across the entire frequency\nspectrum, the Fourier transform is used to capture frequency information and\nestablish frequency domain constraints. At the same time, the phase domain\nconstraint is introduced through Hilbert transformation, which improves the\nmethod's ability to recognize the weak reflection region features. Both\nexperiments on the synthetic data show that TFP-CSIN outperforms the\ntraditional supervised learning method and time domain semi-supervised learning\nmethods in seismic inversion. The field data further verify that the proposed\nmethod improves the identification ability of weak reflection areas and thin\nlayers.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thin layers and reservoirs may be concealed in areas of low seismic reflection amplitude, making them difficult to recognize. Deep learning (DL) techniques provide new opportunities for accurate impedance prediction by establishing a nonlinear mapping between seismic data and impedance. However, existing methods primarily use time domain seismic data, which limits the capture of frequency bands, thus leading to insufficient resolution of the inversion results. To address these problems, we introduce a new time-frequency-phase (TFP) mixed-domain closed-loop seismic inversion network (TFP-CSIN) to improve the identification of thin layers and reservoirs. First, the inversion network and closed-loop network are constructed by using bidirectional gated recurrent units (Bi-GRU) and convolutional neural network (CNN) architectures, enabling bidirectional mapping between seismic data and impedance data. Next, to comprehensive learning across the entire frequency spectrum, the Fourier transform is used to capture frequency information and establish frequency domain constraints. At the same time, the phase domain constraint is introduced through Hilbert transformation, which improves the method's ability to recognize the weak reflection region features. Both experiments on the synthetic data show that TFP-CSIN outperforms the traditional supervised learning method and time domain semi-supervised learning methods in seismic inversion. The field data further verify that the proposed method improves the identification ability of weak reflection areas and thin layers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时频相位混合域高分辨率闭环地震反演网络
薄层和储层可能隐藏在地震反射振幅较低的区域,因此难以识别。深度学习(DL)技术通过在地震数据和阻抗之间建立非线性映射,为准确预测阻抗提供了新的机会。然而,现有方法主要使用时域地震数据,这限制了对频带的捕捉,从而导致反演结果的分辨率不足。针对这些问题,我们引入了一种新的时-频-相(TFP)混合域闭环地震反演网络(TFP-CSIN),以改进薄层和储层的识别。首先,利用双向门控递归单元(Bi-GRU)和卷积神经网络(CNN)架构构建反演网络和闭环网络,实现地震数据和阻抗数据之间的双向映射。接下来,为了对整个频谱进行全面学习,我们使用傅立叶变换来捕捉频率信息并建立频域约束。同时,通过希尔伯特变换引入相域约束,提高了该方法识别弱反射区域特征的能力。在合成数据上的实验表明,TFP-CSIN 在地震反演中的表现优于传统的监督学习方法和时域半监督学习方法。野外数据进一步验证了所提出的方法提高了对弱反射区和薄层的识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Groundwater dynamics beneath a marine ice sheet Generalized failure law for landslides, rockbursts, glacier breakoffs, and volcanic eruptions DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models with 3D Diffusion Models The Arpu Kuilpu Meteorite: In-depth characterization of an H5 chondrite delivered from a Jupiter Family Comet orbit The Sun's Birth Environment: Context for Meteoritics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1