Electric shock fault identification method based on DWT-AE-BPNN for residual current devices in power distribution systems

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical Power & Energy Systems Pub Date : 2024-07-29 DOI:10.1016/j.ijepes.2024.110144
{"title":"Electric shock fault identification method based on DWT-AE-BPNN for residual current devices in power distribution systems","authors":"","doi":"10.1016/j.ijepes.2024.110144","DOIUrl":null,"url":null,"abstract":"<div><p>The protection dead-zone and threshold setting difficulties of the residual current devices (RCDs) in low-voltage distribution networks may lead to the misidentification of electric shock fault, resulting in severe life-threatening accidents. This paper proposes an electric shock fault identification method based on artificial intelligence for RCDs. Firstly, Mallat discrete wavelet transform (DWT) is applied to efficiently extract non-stationary electric shock feature signals from the total residual current with various noises, preventing weak non-stationary electric shock feature signals from being filtered out. Based on the average and maximum components of the signal mutation, an adaptive threshold can be determined to detect electric shock accurately, avoiding the false activation of RCDs caused by load fluctuations. Subsequently, an autoencoder (AE) is built to mine the non-linear features in which the signal of electric shock on living gradually rises and the signal of electric shock on non-living remains stable. Finally, a back propagation neural network (BPNN) is trained to classify the electric shock types from the non-linear features. The simulation and experiment have been conducted to obtain total residual current data under different conditions, and the electric shock fault real-time identification hardware platforms are developed. The accuracy of electric shock fault detection and classification can reach 100 %, which has advanced its practical applicability.</p></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S014206152400365X/pdfft?md5=26721d409f1598e6ba724f01e0a0539f&pid=1-s2.0-S014206152400365X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014206152400365X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The protection dead-zone and threshold setting difficulties of the residual current devices (RCDs) in low-voltage distribution networks may lead to the misidentification of electric shock fault, resulting in severe life-threatening accidents. This paper proposes an electric shock fault identification method based on artificial intelligence for RCDs. Firstly, Mallat discrete wavelet transform (DWT) is applied to efficiently extract non-stationary electric shock feature signals from the total residual current with various noises, preventing weak non-stationary electric shock feature signals from being filtered out. Based on the average and maximum components of the signal mutation, an adaptive threshold can be determined to detect electric shock accurately, avoiding the false activation of RCDs caused by load fluctuations. Subsequently, an autoencoder (AE) is built to mine the non-linear features in which the signal of electric shock on living gradually rises and the signal of electric shock on non-living remains stable. Finally, a back propagation neural network (BPNN) is trained to classify the electric shock types from the non-linear features. The simulation and experiment have been conducted to obtain total residual current data under different conditions, and the electric shock fault real-time identification hardware platforms are developed. The accuracy of electric shock fault detection and classification can reach 100 %, which has advanced its practical applicability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 DWT-AE-BPNN 的配电系统剩余电流设备触电故障识别方法
在低压配电网络中,剩余电流装置(RCD)的保护死区和阈值设定困难,可能导致误判触电故障,造成严重的危及生命的事故。本文提出了一种基于人工智能的 RCD 触电故障识别方法。首先,应用 Mallat 离散小波变换(DWT)从带有各种噪声的总剩余电流中有效提取非稳态电击特征信号,防止滤除微弱的非稳态电击特征信号。根据信号突变的平均分量和最大分量,确定自适应阈值,从而准确检测电击,避免因负载波动而误动作 RCD。随后,建立一个自动编码器(AE)来挖掘非线性特征,其中活体电击信号逐渐上升,而非活体电击信号保持稳定。最后,训练反向传播神经网络(BPNN),根据非线性特征对电击类型进行分类。通过仿真和实验获得了不同条件下的总剩余电流数据,并开发了电击故障实时识别硬件平台。电击故障检测和分类的准确率可达到 100%,提高了其实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
期刊最新文献
Short-term peak shaving model of cascade hybrid pumped storage hydropower station retrofitted from conventional hydropower Passivity-based sliding mode current control for grid-following modular multilevel converter with system disturbances Editorial Board Harmonic measurement and analysis system for characterization of adjustable speed drives A nonsmooth Levenberg–Marquardt method based on KKT conditions for real-time pricing in smart grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1