User-friendly carbon-cycle modelling and aspects of Phanerozoic climate change

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-07-20 DOI:10.1016/j.acags.2024.100180
Trond H. Torsvik , Dana L. Royer , Chloe M. Marcilly , Stephanie C. Werner
{"title":"User-friendly carbon-cycle modelling and aspects of Phanerozoic climate change","authors":"Trond H. Torsvik ,&nbsp;Dana L. Royer ,&nbsp;Chloe M. Marcilly ,&nbsp;Stephanie C. Werner","doi":"10.1016/j.acags.2024.100180","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon-cycle modelling is essential for testing the main carbon sources and sinks as climate forcings, and we introduce and describe <em>GEOCARB_NET,</em> a graphical user interface for the geologic carbon and sulfur cycle model <em>GEOCARBSULFvolc</em>. The software system is menu-driven, user-friendly, and the user is never far removed from the basic input parameters from which atmospheric CO<sub>2</sub> and O<sub>2</sub> concentrations can be derived. <em>GEOCARB_NET</em> is supplied with several published models and the user can easily test and refine these models with different parametrizations. <em>GEOCARB_NET</em> also contains libraries of models and proxy data, which easily can be compared with each other. Our examples focus on how to use <em>GEOCARB_NET</em> in the context of Phanerozoic climate change and highlights how certain key input parameters can seriously affect reconstructed CO<sub>2</sub> levels.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"23 ","pages":"Article 100180"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197424000272/pdfft?md5=c911e4a4b4e93c4ca86a4883260225da&pid=1-s2.0-S2590197424000272-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon-cycle modelling is essential for testing the main carbon sources and sinks as climate forcings, and we introduce and describe GEOCARB_NET, a graphical user interface for the geologic carbon and sulfur cycle model GEOCARBSULFvolc. The software system is menu-driven, user-friendly, and the user is never far removed from the basic input parameters from which atmospheric CO2 and O2 concentrations can be derived. GEOCARB_NET is supplied with several published models and the user can easily test and refine these models with different parametrizations. GEOCARB_NET also contains libraries of models and proxy data, which easily can be compared with each other. Our examples focus on how to use GEOCARB_NET in the context of Phanerozoic climate change and highlights how certain key input parameters can seriously affect reconstructed CO2 levels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
方便用户的碳循环模型和新生代气候变化的各个方面
碳循环建模对于测试作为气候作用力的主要碳源和碳汇至关重要,我们介绍并描述了 GEOCARB_NET,它是地质碳硫循环模型 GEOCARBSULFvolc 的图形用户界面。该软件系统由菜单驱动,用户界面友好,用户可以随时查阅基本输入参数,并从中推导出大气中二氧化碳和氧气的浓度。GEOCARB_NET 提供了多个已发布的模型,用户可以使用不同的参数轻松测试和完善这些模型。GEOCARB_NET 还包含模型库和替代数据,可以很容易地相互比较。我们的示例重点介绍了如何在新生代气候变化的背景下使用 GEOCARB_NET,并强调了某些关键输入参数会如何严重影响重建的二氧化碳水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
A machine learning approach for mapping susceptibility to land subsidence caused by ground water extraction Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1