Amy Bucher PhD, E. Susanne Blazek PhD, Christopher T. Symons PhD
{"title":"How are Machine Learning and Artificial Intelligence Used in Digital Behavior Change Interventions? A Scoping Review","authors":"Amy Bucher PhD, E. Susanne Blazek PhD, Christopher T. Symons PhD","doi":"10.1016/j.mcpdig.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>To assess the current real-world applications of machine learning (ML) and artificial intelligence (AI) as functionality of digital behavior change interventions (DBCIs) that influence patient or consumer health behaviors. A scoping review was done across the EMBASE, PsycInfo, PsycNet, PubMed, and Web of Science databases using search terms related to ML/AI, behavioral science, and digital health to find live DBCIs using ML or AI to influence real-world health behaviors in patients or consumers. A total of 32 articles met inclusion criteria. Evidence regarding behavioral domains, target real-world behaviors, and type and purpose of ML and AI used were extracted. The types and quality of research evaluations done on the DBCIs and limitations of the research were also reviewed. Research occurred between October 9, 2023, and January 20, 2024. Twenty-three DBCIs used AI to influence real-world health behaviors. Most common domains were cardiometabolic health (n=5, 21.7%) and lifestyle interventions (n=4, 17.4%). The most common types of ML and AI used were classical ML algorithms (n=10, 43.5%), reinforcement learning (n=8, 34.8%), natural language understanding (n=8, 34.8%), and conversational AI (n=5, 21.7%). Evidence was generally positive, but had limitations such as inability to detect causation, low generalizability, or insufficient study duration to understand long-term outcomes. Despite evidence gaps related to the novelty of the technology, research supports the promise of using AI in DBCIs to manage complex input data and offer personalized, contextualized support for people changing real-world behaviors. Key opportunities are standardizing terminology and improving understanding of what ML and AI are.</p></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 3","pages":"Pages 375-404"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000427/pdfft?md5=6c9780a76948435fb6c91a05b2e3b023&pid=1-s2.0-S2949761224000427-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224000427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To assess the current real-world applications of machine learning (ML) and artificial intelligence (AI) as functionality of digital behavior change interventions (DBCIs) that influence patient or consumer health behaviors. A scoping review was done across the EMBASE, PsycInfo, PsycNet, PubMed, and Web of Science databases using search terms related to ML/AI, behavioral science, and digital health to find live DBCIs using ML or AI to influence real-world health behaviors in patients or consumers. A total of 32 articles met inclusion criteria. Evidence regarding behavioral domains, target real-world behaviors, and type and purpose of ML and AI used were extracted. The types and quality of research evaluations done on the DBCIs and limitations of the research were also reviewed. Research occurred between October 9, 2023, and January 20, 2024. Twenty-three DBCIs used AI to influence real-world health behaviors. Most common domains were cardiometabolic health (n=5, 21.7%) and lifestyle interventions (n=4, 17.4%). The most common types of ML and AI used were classical ML algorithms (n=10, 43.5%), reinforcement learning (n=8, 34.8%), natural language understanding (n=8, 34.8%), and conversational AI (n=5, 21.7%). Evidence was generally positive, but had limitations such as inability to detect causation, low generalizability, or insufficient study duration to understand long-term outcomes. Despite evidence gaps related to the novelty of the technology, research supports the promise of using AI in DBCIs to manage complex input data and offer personalized, contextualized support for people changing real-world behaviors. Key opportunities are standardizing terminology and improving understanding of what ML and AI are.