AI-driven drug discovery from natural products

Feng-Lei Duan , Chun-Bao Duan , Hui-Lin Xu , Xin-Ying Zhao , Otgonpurev Sukhbaatar , Jie Gao , Ming-Zhi Zhang , Wei-Hua Zhang , Yu-Cheng Gu
{"title":"AI-driven drug discovery from natural products","authors":"Feng-Lei Duan ,&nbsp;Chun-Bao Duan ,&nbsp;Hui-Lin Xu ,&nbsp;Xin-Ying Zhao ,&nbsp;Otgonpurev Sukhbaatar ,&nbsp;Jie Gao ,&nbsp;Ming-Zhi Zhang ,&nbsp;Wei-Hua Zhang ,&nbsp;Yu-Cheng Gu","doi":"10.1016/j.aac.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>The latest review published in <em>Nature Reviews Drug Discovery</em> by Michael W. Mullowney and co-authors focuses on the use of artificial intelligence techniques, specifically machine learning, in natural product drug discovery. The authors discussed various applications of AI in this field, such as genome and metabolome mining, structural characterization of natural products, and predicting targets and biological activities of these compounds. They also highlighted the challenges associated with creating and managing large datasets for training algorithms, as well as strategies to address these obstacles. Additionally, the authors examine common pitfalls in algorithm training and offer suggestions for avoiding them.</p></div>","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"3 3","pages":"Pages 185-187"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773237124000522/pdfft?md5=2dd2ba82adcf65a6ea25064ea9146daa&pid=1-s2.0-S2773237124000522-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Agrochem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773237124000522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The latest review published in Nature Reviews Drug Discovery by Michael W. Mullowney and co-authors focuses on the use of artificial intelligence techniques, specifically machine learning, in natural product drug discovery. The authors discussed various applications of AI in this field, such as genome and metabolome mining, structural characterization of natural products, and predicting targets and biological activities of these compounds. They also highlighted the challenges associated with creating and managing large datasets for training algorithms, as well as strategies to address these obstacles. Additionally, the authors examine common pitfalls in algorithm training and offer suggestions for avoiding them.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能驱动的天然产品药物研发
Michael W. Mullowney 和合著者在《自然-药物发现评论》(Nature Reviews Drug Discovery)上发表的最新综述重点介绍了人工智能技术(特别是机器学习)在天然产物药物发现中的应用。作者讨论了人工智能在这一领域的各种应用,如基因组和代谢组挖掘、天然产物的结构表征以及预测这些化合物的靶点和生物活性。他们还强调了与创建和管理用于训练算法的大型数据集相关的挑战,以及解决这些障碍的策略。此外,作者还探讨了算法训练中的常见误区,并提出了避免这些误区的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
期刊最新文献
Discovery of 4-Hydroxyphenylpyruvate dioxygenase inhibitors with novel pharmacophores Design, synthesis and bioactivity of cyclic dinucleotides against Lepidoptera insects Nature: Zinc-mediated regulation of nitrogen fixation through transcription factor filamentation in legumes Antimicrobial metabolites produced by the plant growth-promoting rhizobacteria (PGPR): Bacillus and Pseudomonas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1