Recent Advances of Multidentate Ligand-Based Anion-Pillared MOFs for Enhanced Separation and Purification Processes

Xing Liu, Hao Wang, Cheng Liu, Jingwen Chen, Zhenyu Zhou, Shuguang Deng and Jun Wang*, 
{"title":"Recent Advances of Multidentate Ligand-Based Anion-Pillared MOFs for Enhanced Separation and Purification Processes","authors":"Xing Liu,&nbsp;Hao Wang,&nbsp;Cheng Liu,&nbsp;Jingwen Chen,&nbsp;Zhenyu Zhou,&nbsp;Shuguang Deng and Jun Wang*,&nbsp;","doi":"10.1021/cbe.3c0011510.1021/cbe.3c00115","DOIUrl":null,"url":null,"abstract":"<p >As an important subclass of metal–organic frameworks (MOFs), anion-pillars MOFs (APMOFs) have recently exhibited exceptional performances in separation and purification processes. The adjustment of pore sizes and environments of APMOFs can be finely tuned through judicious combination of organic ligands, anion pillars, and metal ions. Compared to widely investigated anion pillars, organic ligands are more crucial as they allow for a broader range of pore sizes and environments at the nanometer scale. Furthermore, different from the bidentate ligand-based APMOFs that typically form three-dimensional (3D) frameworks with <i><b>pcu</b></i> topology, APMOFs constructed using multidentate nitrogen(N)-containing ligands (with a coordination number ≥ 3) offer opportunities to create APMOFs with diverse topologies. The larger dimensions and possible distortion of multidentate N-containing ligands prove advantageous for addressing multi-component hydrocarbon separations encompassing a broad spectrum of dynamic diameters. Therefore, this Review summarizes the structural characteristics of multidentate ligand-based APMOFs and their enhanced performances for gas separation and purification processes. Additionally, it discusses current challenges and prospects associated with constructing multidentate ligand-based APMOFs while providing prospects. This critical review will provide valuable insights and guides for designing and developing advanced multidentate ligand-based APMOF adsorbents.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"1 6","pages":"469–487 469–487"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.3c00115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbe.3c00115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As an important subclass of metal–organic frameworks (MOFs), anion-pillars MOFs (APMOFs) have recently exhibited exceptional performances in separation and purification processes. The adjustment of pore sizes and environments of APMOFs can be finely tuned through judicious combination of organic ligands, anion pillars, and metal ions. Compared to widely investigated anion pillars, organic ligands are more crucial as they allow for a broader range of pore sizes and environments at the nanometer scale. Furthermore, different from the bidentate ligand-based APMOFs that typically form three-dimensional (3D) frameworks with pcu topology, APMOFs constructed using multidentate nitrogen(N)-containing ligands (with a coordination number ≥ 3) offer opportunities to create APMOFs with diverse topologies. The larger dimensions and possible distortion of multidentate N-containing ligands prove advantageous for addressing multi-component hydrocarbon separations encompassing a broad spectrum of dynamic diameters. Therefore, this Review summarizes the structural characteristics of multidentate ligand-based APMOFs and their enhanced performances for gas separation and purification processes. Additionally, it discusses current challenges and prospects associated with constructing multidentate ligand-based APMOFs while providing prospects. This critical review will provide valuable insights and guides for designing and developing advanced multidentate ligand-based APMOF adsorbents.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强分离和纯化过程的多配体阴离子柱状 MOF 的最新进展
作为金属有机框架(MOFs)的一个重要子类,阴离子柱 MOFs(APMOFs)近年来在分离和纯化过程中表现出了卓越的性能。通过有机配体、阴离子柱和金属离子的合理组合,可以对 APMOFs 的孔径和环境进行微调。与广泛研究的阴离子柱相比,有机配体更为重要,因为它们可以在纳米尺度上实现更广泛的孔径和环境。此外,与通常形成具有 pcu 拓扑结构的三维(3D)框架的双叉配体型 APMOFs 不同,使用多叉含氮(N)配体(配位数≥ 3)构建的 APMOFs 为创造具有不同拓扑结构的 APMOFs 提供了机会。事实证明,多叉含氮配体的较大尺寸和可能的变形有利于解决包括广泛动态直径的多组分碳氢化合物分离问题。因此,本综述总结了基于多叉配体的 APMOFs 的结构特点及其在气体分离和纯化过程中的增强性能。此外,它还讨论了当前与构建多叉配体 APMOFs 相关的挑战和前景,同时提供了展望。这篇重要综述将为设计和开发先进的多叉配体基 APMOF 吸附剂提供宝贵的见解和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Publication Information Issue Editorial Masthead Advanced Separation Materials and Processes Advanced Separation Materials and Processes. Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1