Going Beyond Carbon Redirection: Integrating Operational Conditions to Maximize Carbon and Phosphorus Removal in the A-Stage Process

IF 4.8 Q1 ENVIRONMENTAL SCIENCES ACS ES&T water Pub Date : 2024-07-22 DOI:10.1021/acsestwater.4c0022610.1021/acsestwater.4c00226
Ahmed AlSayed, Moomen Soliman, Salma Hendy and Ahmed ElDyasti*, 
{"title":"Going Beyond Carbon Redirection: Integrating Operational Conditions to Maximize Carbon and Phosphorus Removal in the A-Stage Process","authors":"Ahmed AlSayed,&nbsp;Moomen Soliman,&nbsp;Salma Hendy and Ahmed ElDyasti*,&nbsp;","doi":"10.1021/acsestwater.4c0022610.1021/acsestwater.4c00226","DOIUrl":null,"url":null,"abstract":"<p >This study explores the use of the alternating activated adsorption (AAA) system to achieve a balance between sustaining high COD redirection toward recovery streams and high effluent quality, in terms of COD and phosphorus removal. It investigates a novel integrative operational approach that includes hydraulic retention time (HRT), solid retention time (SRT), dissolved oxygen (DO) concentration, and effluent recirculation. Results indicated that integrating long HRT (4 h) with limited DO concentration (below 0.5 mgO<sub>2</sub>/L) effectively controlled COD oxidation while allowing for high COD redirection. Effluent recirculation further improved solid capture and COD redirection, while short SRT limited the associated oxidation through hydrolysis. Notably, this resulted in achieving COD redirection and removal above 50 and 80%, respectively. Meanwhile, such conditions achieved biophosphorus removal efficiencies as high as 55–60%, which surpasses other A-stage systems. To achieve higher phosphorus removal, enhanced biological phosphorus removal (EBPR) should be induced under conditions that slightly diminish the COD redirection and, to a lesser extent, the COD removal efficiency. Significantly, this research suggests a novel approach to designing and operating the A-stage process, particularly AAA, acknowledging its holistic role in fostering sustainable and energy-efficient wastewater treatment.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"4 8","pages":"3359–3368 3359–3368"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c00226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the use of the alternating activated adsorption (AAA) system to achieve a balance between sustaining high COD redirection toward recovery streams and high effluent quality, in terms of COD and phosphorus removal. It investigates a novel integrative operational approach that includes hydraulic retention time (HRT), solid retention time (SRT), dissolved oxygen (DO) concentration, and effluent recirculation. Results indicated that integrating long HRT (4 h) with limited DO concentration (below 0.5 mgO2/L) effectively controlled COD oxidation while allowing for high COD redirection. Effluent recirculation further improved solid capture and COD redirection, while short SRT limited the associated oxidation through hydrolysis. Notably, this resulted in achieving COD redirection and removal above 50 and 80%, respectively. Meanwhile, such conditions achieved biophosphorus removal efficiencies as high as 55–60%, which surpasses other A-stage systems. To achieve higher phosphorus removal, enhanced biological phosphorus removal (EBPR) should be induced under conditions that slightly diminish the COD redirection and, to a lesser extent, the COD removal efficiency. Significantly, this research suggests a novel approach to designing and operating the A-stage process, particularly AAA, acknowledging its holistic role in fostering sustainable and energy-efficient wastewater treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越碳重定向:整合运行条件,最大限度地提高 A 级工艺的除碳除磷效果
本研究探讨了交替活性吸附 (AAA) 系统的使用,以便在保持高化学需氧量(COD)向回收水流的重新定向与高出水质量(COD 和磷去除率)之间实现平衡。它研究了一种新的综合运行方法,包括水力停留时间(HRT)、固体停留时间(SRT)、溶解氧(DO)浓度和出水再循环。结果表明,将较长的水力停留时间(4 小时)与有限的溶解氧浓度(低于 0.5 mgO2/L)相结合,可有效控制 COD 氧化,同时实现高 COD 重定向。出水再循环进一步改善了固体捕获和 COD 重定向,而短 SRT 则通过水解作用限制了相关的氧化作用。值得注意的是,这使得 COD 重定向和去除率分别超过了 50% 和 80%。同时,这种条件下的生物除磷效率高达 55-60%,超过了其他 A 级系统。为了达到更高的除磷效果,应在略微降低 COD 重定向和 COD 去除效率的条件下诱导增强型生物除磷 (EBPR)。值得注意的是,这项研究提出了一种设计和运行 A 级工艺(尤其是 AAA)的新方法,承认其在促进可持续和节能型污水处理中的整体作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information ACS ES&T Water Presents the 2023 Excellence in Review Awards Advancing Sustainable Water Quality Monitoring and Remediation in Malaysia: Innovative Analytical Solutions for Detecting and Removing Emerging Contaminants Correction to “Sorption Behavior of Trace Organic Chemicals on Carboxylated Polystyrene Nanoplastics”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1