{"title":"Rotational Symmetry Effects on Multibody Lateral Interactions between Co-Adsorbates at Heterogeneous Interfaces","authors":"Shuqiao Wang, and , Alyssa J.R. Hensley*, ","doi":"10.1021/acsphyschemau.4c0001910.1021/acsphyschemau.4c00019","DOIUrl":null,"url":null,"abstract":"<p >Heterogeneous interfaces are critical in a wide range of applications, and their material properties can be tuned via changes in the coverage and configuration of chemical adsorbates. However, the tunability of such adlayers is limited by a lack of knowledge surrounding the impact of adsorbate internal structure and rotational symmetry on lateral interactions between coadsorbates. Using density functional theory (DFT) and cluster expansions, we systematically determine the impacts of rotational symmetry on lateral interactions between coadsorbates as a function of DFT functional, adsorbate type, metal type, and cluster configuration. Results indicate that the rotational symmetry effects can be nearly exclusively partitioned into the shortest 2-body clusters. By electronic analysis, the nature and strength of such effects on the lateral interactions are attributed to a balance of repulsive and attractive electrostatic interactions that are dependent on the adsorbate and metal types. Taken together, our characterization of the impacts of adsorbate internal structure and rotational symmetry on lateral interactions enables improved accuracy within multiscale modeling of multibody adsorbates at heterogeneous interfaces.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 4","pages":"328–335 328–335"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous interfaces are critical in a wide range of applications, and their material properties can be tuned via changes in the coverage and configuration of chemical adsorbates. However, the tunability of such adlayers is limited by a lack of knowledge surrounding the impact of adsorbate internal structure and rotational symmetry on lateral interactions between coadsorbates. Using density functional theory (DFT) and cluster expansions, we systematically determine the impacts of rotational symmetry on lateral interactions between coadsorbates as a function of DFT functional, adsorbate type, metal type, and cluster configuration. Results indicate that the rotational symmetry effects can be nearly exclusively partitioned into the shortest 2-body clusters. By electronic analysis, the nature and strength of such effects on the lateral interactions are attributed to a balance of repulsive and attractive electrostatic interactions that are dependent on the adsorbate and metal types. Taken together, our characterization of the impacts of adsorbate internal structure and rotational symmetry on lateral interactions enables improved accuracy within multiscale modeling of multibody adsorbates at heterogeneous interfaces.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis