{"title":"Bicarbonate-Carbonate Selectivity through Nanofiltration for Direct Air Capture of Carbon Dioxide","authors":"Anatoly Rinberg*, and , Michael J. Aziz, ","doi":"10.1021/acsestengg.4c0015010.1021/acsestengg.4c00150","DOIUrl":null,"url":null,"abstract":"<p >Direct air capture (DAC) of carbon dioxide is one approach among many proposed that is capable of offsetting hard-to-avoid emissions. In previous work, we developed the alkalinity concentration swing (ACS) method, which is driven through concentrating an alkaline solution that has been loaded with atmospheric CO<sub>2</sub> by desalination technologies, such as reverse osmosis or capacitive deionization. Though the ACS is promising in terms of energy usage and implementation, its absorption rate and water requirements are infeasible for a large-scale DAC process. Here, we propose an improvement on the ACS, the bicarbonate-enriched alkalinity concentration swing (BE-ACS), which selects bicarbonate ions from a stream of aqueous alkaline solution that has absorbed atmospheric CO<sub>2</sub>. The bicarbonate-rich stream is then concentrated, which greatly increases its CO<sub>2</sub> partial pressure, and then CO<sub>2</sub> is extracted from solution. We experimentally investigate the use of pressure-driven nanofiltration (NF) membrane-based separation to select bicarbonate ions over carbonate ions. We screen commercial membranes and select one high-performance membrane for detailed studies, quantifying its bicarbonate-carbonate selectivity factor and bicarbonate-passage factor. Feed pH, the combined concentration of aqueous CO<sub>2</sub>, bicarbonate, and carbonate species (or dissolved inorganic carbon), alkalinity, and permeation flux are systematically varied to study NF separation properties. We find that the selectivity factor, which exceeds 30 times in certain regimes, increases with higher feed pH and higher alkalinity. The performance metrics of the selected NF membrane are input into a theoretical BE-ACS cycle analysis, and the required energy input and cycle capacity output are evaluated. Ideal cycle energy is found to be as low as around 250 kJ/mol, with opportunities identified for further decreases through process engineering and forward osmosis energy recovery.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Direct air capture (DAC) of carbon dioxide is one approach among many proposed that is capable of offsetting hard-to-avoid emissions. In previous work, we developed the alkalinity concentration swing (ACS) method, which is driven through concentrating an alkaline solution that has been loaded with atmospheric CO2 by desalination technologies, such as reverse osmosis or capacitive deionization. Though the ACS is promising in terms of energy usage and implementation, its absorption rate and water requirements are infeasible for a large-scale DAC process. Here, we propose an improvement on the ACS, the bicarbonate-enriched alkalinity concentration swing (BE-ACS), which selects bicarbonate ions from a stream of aqueous alkaline solution that has absorbed atmospheric CO2. The bicarbonate-rich stream is then concentrated, which greatly increases its CO2 partial pressure, and then CO2 is extracted from solution. We experimentally investigate the use of pressure-driven nanofiltration (NF) membrane-based separation to select bicarbonate ions over carbonate ions. We screen commercial membranes and select one high-performance membrane for detailed studies, quantifying its bicarbonate-carbonate selectivity factor and bicarbonate-passage factor. Feed pH, the combined concentration of aqueous CO2, bicarbonate, and carbonate species (or dissolved inorganic carbon), alkalinity, and permeation flux are systematically varied to study NF separation properties. We find that the selectivity factor, which exceeds 30 times in certain regimes, increases with higher feed pH and higher alkalinity. The performance metrics of the selected NF membrane are input into a theoretical BE-ACS cycle analysis, and the required energy input and cycle capacity output are evaluated. Ideal cycle energy is found to be as low as around 250 kJ/mol, with opportunities identified for further decreases through process engineering and forward osmosis energy recovery.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.