Dewang Wang , Gaobo Yang , Zhiqing Guo , Jiyou Chen
{"title":"Improving image steganography security via ensemble steganalysis and adversarial perturbation minimization","authors":"Dewang Wang , Gaobo Yang , Zhiqing Guo , Jiyou Chen","doi":"10.1016/j.jisa.2024.103835","DOIUrl":null,"url":null,"abstract":"<div><p>Adversarial embedding, which can deceive the CNN-based steganalyzers, has emerged as an effective strategy to improve image steganography security. However, its efficacy might be easily weakened when confronting re-trained or unknown steganalyzers. In this work, the security of adversarial embedding-based image steganography is further improved by ensemble steganalysis and adversarial perturbation minimization. Different from the existing works that rely on a single targeted steganalyzer, the proposed approach develops an ensemble steganographic classifier, which leverages the majority voting rule to smartly select those pixels that are more suitable for adversarial embedding. To mitigate the interference caused by adversarial embedding, two strategies are adopted. Firstly, a cover image is divided into two non-overlapping regions in terms of pixel gradient amplitude. The regions with higher gradient amplitudes are progressively conducted with adversarial embedding until the targeted steganalyzer is effectively deceived. Secondly, the embedding costs are fine-tuned to minimize the degradation of image quality. Extensive experimental results demonstrate that the proposed approach achieves superior steganography security. Under black-box attacks, with S-UNIWARD and HILL as baseline methods and Deng-Net as the targeted steganalyzer, the proposed approach improves the average detection accuracy of 4.88% and 2.47% for S-UNIWARD and HILL, respectively. In comparison, the existing works only achieve improvements of 2.88% and 2.93% for S-UNIWARD, and 1.44% and 1.12% for HILL, respectively.</p></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"85 ","pages":"Article 103835"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624001376","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Adversarial embedding, which can deceive the CNN-based steganalyzers, has emerged as an effective strategy to improve image steganography security. However, its efficacy might be easily weakened when confronting re-trained or unknown steganalyzers. In this work, the security of adversarial embedding-based image steganography is further improved by ensemble steganalysis and adversarial perturbation minimization. Different from the existing works that rely on a single targeted steganalyzer, the proposed approach develops an ensemble steganographic classifier, which leverages the majority voting rule to smartly select those pixels that are more suitable for adversarial embedding. To mitigate the interference caused by adversarial embedding, two strategies are adopted. Firstly, a cover image is divided into two non-overlapping regions in terms of pixel gradient amplitude. The regions with higher gradient amplitudes are progressively conducted with adversarial embedding until the targeted steganalyzer is effectively deceived. Secondly, the embedding costs are fine-tuned to minimize the degradation of image quality. Extensive experimental results demonstrate that the proposed approach achieves superior steganography security. Under black-box attacks, with S-UNIWARD and HILL as baseline methods and Deng-Net as the targeted steganalyzer, the proposed approach improves the average detection accuracy of 4.88% and 2.47% for S-UNIWARD and HILL, respectively. In comparison, the existing works only achieve improvements of 2.88% and 2.93% for S-UNIWARD, and 1.44% and 1.12% for HILL, respectively.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.